1 #coding:utf-8
# 日期 2017年9月4日 环境 Python 3.5  TensorFlow 1.3 win10开发环境。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os # 基础的学习率
LEARNING_RATE_BASE = 0.8 # 学习率的衰减率
LEARNING_RATE_DECAY = 0.99 # 描述模型复杂度的正则化项在损失函数中的系数
REGULARIZATION_RATE = 0.0001 # 训练轮数
TRAINING_STEPS = 30000 # 滑动平均衰减率
MOVING_AVERAGE_DECAY = 0.99 # 模型持久化保存路径
MODEL_SAVE_PATH = "MNIST_model/"
# 模型持久化保存文件名称
MODEL_NAME = "mnist_model" # 输入层节点数(对于数据集,相当于整个图片的像素数目)
INPUT_NODE = 784 # 输出层的节点数(根据10个数字决定的)
OUTPUT_NODE = 10 # 隐藏层的节点数,此例程中,隐藏层为一层。
LAYER1_NODE = 500 # 一个训练batch中的训练数据个数,数字越小的时候,训练过程越接近随机梯度下降。
BATCH_SIZE = 100 def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 正则化损失函数
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
# 使用定义的向前传播过程
y = inference(x, regularizer) # 定义存储训练轮数的变量。这个变量不需要计算滑动的平均值,所以这里指定这个变量为不可训练的变量(trainable=False)。
# 在tensorflow中训练神经网络的时候,一般会将代表训练轮数的变量指定为不可训练的参数。
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
# 在所有代表神经网络参数的变量上使用滑动平均。其它辅助变量(如global_step)就不需要了
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# 计算交叉熵作为刻画预测值和真实值之间差距的损失函数。(第一个参数是神经网络不包含softmax层的前向传播结果,第二个是训练数据的正确答案)
# 因为标准答案是一个长度为10的一维数组,二该函数需要提供的是一个正确答案的数字,所以需要使用tf.argmax函数来得到正确答案对应的类别编号。
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
# 计算当前batch中所有样例的交叉熵平均值
cross_entropy_mean = tf.reduce_mean(cross_entropy)
# 总损失等于交叉熵和
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) # 设置指数衰减的学习率
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE, # 基础的学习率,随着迭代的进行,更新变量时使用的学习率在这个基础上递减
global_step, # 当前迭代的轮数
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY, # 过完所有的训练数据需要的迭代次数
staircase=True) # 使用tf.train.GradientDescentOptimizer优化算法来优化损失函数。注意这里损失函数包含了交叉熵和正则损失
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run() # 在训练过程中,不在测试模型在验证数据上的表现,验证和测试的过程将会有一个独立的程序来完成。
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
# 输出当前的训练情况,这里只输出了模型在当前训练batch上的损失函数大小,通过损失函数的大小可以大概了解训练的情况。在验证数据集上的正确
# 率信息会有一个单独的程序来生成。
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
# 保存当前的模型。global_step参数,这样可以让每个被保存模型的文件名末尾加上训练的轮数,如model.ckpt-1000表示训练1000轮之后得到的模型
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) # 通过tf.get_variable函数来获取变量 在测试是会通过保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变量重命名
# 所以可以直接通过同样的名字在训练时使用变量自身,而在测试时使用变量的滑动平均值。这个函数中会将变量的正则化损失加损失集合。
def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
# 当给出正则化生产函数时,将当前变量的正则化损失加入名字为Losses的集合。在这里使用了add_to_collection函数将一个张量加入一个集合,
# 而这个集合的名称为losses.这是自定义集合,不在Tensorflow自动管理的集合列表中
if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
return weights # 定义神经网络的前向传播过程(初始化所有参数的辅助函数,给定神经网络中的参数)
def inference(input_tensor, regularizer):
# 声明第一层神经网络的变量并完成前向传播过程
with tf.variable_scope('layer1'):
# 通过tf.get_variable 和tf.Variable没有本质区别,因为在训练或是测试中没有在同一个程序中多次调用这个函数。如果在同一个过程多次调用,
# 在第一调用的之后需要将resuse参数设置为True
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) # 声明第二层神经网络的变量并完成向前传播的过程
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases return layer2 # 2.主程序部分
def main(argv=None):
# 获取数据集(根据谷歌的例程中相关的获取路径)
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
# 根据数据集训练模型
train(mnist) # 1 .程序入口
if __name__ == '__main__':
main()

对Tensorflow中经典的MNIST模型的学习,程序整个过程进行了注释,摘自《实战google深度学习框架》中代码,并进行修改后注释。

Tensorflow学习笔记(对MNIST经典例程的)的代码注释与理解的更多相关文章

  1. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  2. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  3. TensorFlow学习笔记(MNIST报错修正 适用Tensorflow1.3)

    在Tensorflow实战Google框架下的深度学习这本书的MNIST的图像识别例子中,每次都要报错   错误如下: Only call `sparse_softmax_cross_entropy_ ...

  4. tensorflow学习笔记————分类MNIST数据集

    在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题. 一般是通过使用tensorflow内置的函数进行下载和加载, from tensorflow.examp ...

  5. tensorflow学习笔记(10) mnist格式数据转换为TFrecords

    本程序 (1)mnist的图片转换成TFrecords格式 (2) 读取TFrecords格式 # coding:utf-8 # 将MNIST输入数据转化为TFRecord的格式 # http://b ...

  6. Tensorflow学习笔记No.5

    tf.data卷积神经网络综合应用实例 使用tf.data建立自己的数据集,并使用CNN卷积神经网络实现对卫星图像的二分类问题. 数据下载链接:https://pan.baidu.com/s/141z ...

  7. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  8. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  9. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

  10. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

随机推荐

  1. python的测试

    测试 知识点 单元测试概念 使用 unittest 模块 测试用例的编写 异常测试 测试覆盖率概念 使用 coverage 模块 实验步骤 1. 应该测试什么? 如果可能的话,代码库中的所有代码都要测 ...

  2. Beta冲刺Day2

    项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...

  3. 坑爹了多少年的html元素垂直居中问题

    原文章:https://www.w3cplus.com/css3/a-guide-to-flexbox.html 如果你的元素有固定高度的话 父元素用display: flex;height:100p ...

  4. zookeeper入门系列:paxos协议

    上一章讨论了一种强一致性的情况,即需要分布式事务来解决,本章我们来讨论一种最终一致的算法,paxos算法. paxos算法是由大牛lamport发明的,关于paxos算法有很多趣事.比如lamport ...

  5. php析构方法

    析构方法说明: 1. 析构方法会自动调用 2. 析构方法主要用于销毁资源(比如释放数据库的链接,图片资源...销毁某个对象..); 析构函数会在到对象的所有的引用都被删除或者当对象被显示销毁时执行. ...

  6. ### Cause: org.apache.ibatis.binding.BindingException: Parameter 'name' not found. Available parameters are [arg1, arg0, param1, param2]

    org.apache.ibatis.exceptions.PersistenceException: ### Error updating database. Cause: org.apache.ib ...

  7. 大数据学习总结(7)we should...

    大数据场景一.各种标签查询 查询要素:人.事.物.单位 查询范围:A范围.B范围.... 查询结果:pic.name.data from 1.痛点:对所有文本皆有实时查询需求2.难点:传统SQL使用W ...

  8. gradle入门(1-1)gradle的概念和使用

    一.Gradle是什么 Gradle是一种Java应用构建工具,它采用领域特定语言 Groovy 语法实现配置. 1.Gradle的基本概念 项目:项目的配置 即 build.gradle. 任务:任 ...

  9. 页面加载loading动画

    关于页面加载的loading动画,能度娘到的大部分都是通过定时器+蒙层实现的,虽然表面上实现了动画效果,实际上动化进程和页面加载进程是没有什么关系的,只是设置几秒钟之后关闭蒙层,但假如页面须要加载的元 ...

  10. linux系统下的SVN安装

    1.直接安装 # sudo apt-get install subversion 2. 创建版本库 # sudo mkdir /home/svn # sudo svnadmin create /hom ...