[Codeforces 961G]Partitions
Description
给你 \(n\) 个不同的元素组成的集合 \(R\) ,每个元素有一个权值 \(w\) 。对于一个子集集合 \(S\) ,它的价值为 \(W(S)=|S|\cdot\sum\limits_{i\in S}w_i\) 。现要求将该集合 \(R\) 划分成 \(k\) 个互不相交的非空子集 \(S_i\) 。定义一种划分的价值为 \(\sum\limits_{i=1}^k W(S_i)\) 。求所有划分的价值和。对大质数取模。
\(1\leq k\leq n\leq 2\cdot 10^5\)
Solution
容易发现对于不同的元素,他对答案的贡献本质是相同的。即我们只要求出某一种元素在所有方案中出现的次数 \(sum\) ,那么答案就是 \(sum\times \sum\limits_{i=1}^n w_i\) 。
考虑如何求 \(sum\) 。
容易发现它对 \(sum\) 的贡献只与和它被划分到同一集合的元素的个数有关。
- 如果该元素被单独划分成一组,那么答案的贡献为 \(S(n-1, k-1)\) 。(其中形同 \(S(n, m)\) 的表示第二类斯特林数。)因为它单独分为一组,所以答案贡献为 \(1\) ,只要讨论其他 \(n-1\) 个元素怎么分即可;
- 如果不是单独分为一组,我们考虑用类似的方法来讨论。还是将其他的 \(n-1\) 个元素先分好,共 \(S(n-1,k)\) 种。接下来考虑剩下的元素该如何放。对于一种划分 \(n-1\) 个元素的情况。我们记每一个子集元素个数为 \(a_i\) 。那么答案应该是 \(\sum\limits_{i=1}^k a_i+1\) 。不过因为 \(\sum\limits_{i=1}^k a_i=n-1\) ,所以在这种划分情况下,该元素的贡献就是 \(n+k-1\) 。故总贡献为 \((n+k-1)\cdot S(n-1, k)\) 。
综上答案就是 \((S(n-1,k-1)+(n+k-1)\cdot S(n-1, k))\cdot\sum\limits_{i=1}^n w_i\) 。
\(S(n,m)\) 用通项公式计算就好了。
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5, yzh = 1e9+7;
int x, n, k, inv[N+5];
int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
a = 1ll*a*a%yzh, b >>= 1;
}
return ans;
}
int S(int n, int m) {
int ans = 0;
for (int i = 0; i <= m; i++) {
int t = 1ll*inv[i]*inv[m-i]%yzh*quick_pow(m-i, n)%yzh;
if (i&1) (ans -= t) %= yzh;
else (ans += t) %= yzh;
}
return ans;
}
void work() {
scanf("%d%d", &n, &k); inv[0] = inv[1] = 1;
for (int i = 2; i <= k; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= k; i++) inv[i] = 1ll*inv[i-1]*inv[i]%yzh;
int sum = 0;
for (int i = 1; i <= n; i++) scanf("%d", &x), (sum += x) %= yzh;
int ans = (S(n-1, k-1)+1ll*(n+k-1)*S(n-1, k)%yzh)%yzh;
ans = 1ll*ans*sum%yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }
[Codeforces 961G]Partitions的更多相关文章
- 【题解】Codeforces 961G Partitions
[题解]Codeforces 961G Partitions cf961G 好题啊哭了,但是如果没有不小心看了一下pdf后面一页的提示根本想不到 题意 已知\(U=\{w_i\}\),求: \[ \s ...
- CF 961G Partitions
推不动式子 我们考虑每一个$w_i$对答案的贡献,因为题目中定义集合的价值为$W(S) = \left | S \right |\sum_{x \in S}w_x$,这个系数$\left | S \r ...
- [总结]其他杂项数学相关(定理&证明&板子)
目录 写在前面 一类反演问题 莫比乌斯反演 快速莫比乌斯变换(反演)与子集卷积 莫比乌斯变换(反演) 子集卷积 二项式反演 内容 证明 应用举例 另一形式 斯特林反演 第一类斯特林数 第二类斯特林数 ...
- 【CodeForces】961 G. Partitions 斯特林数
[题目]G. Partitions [题意]n个数$w_i$,每个非空子集S的价值是$W(S)=|S|\sum_{i\in S}w_i$,一种划分方案的价值是所有非空子集的价值和,求所有划分成k个非空 ...
- 「CF 961G」Partitions
题目链接 戳我 \(Solution\) 首先,这个直接推式子.自己推去 所以我们来想一想一些巧妙的方法 \(|S|\sum w_i\) 可以转化为:划分好集合后,每个点都对当前点有\(w_i\)的贡 ...
- Codeforces Global Round 7 C. Permutation Partitions(组合数学)
题意: 给你 n 长全排列的一种情况,将其分为 k 份,取每份中的最大值相加,输出和的最大值和有多少种分法等于最大值. 思路: 取前 k 大值,储存下标,每两个 k 大值间有 vi+1 - vi 种分 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- Codeforces Beta Round #97 (Div. 1) B. Rectangle and Square 暴力
B. Rectangle and Square 题目连接: http://codeforces.com/contest/135/problem/B Description Little Petya v ...
- Educational Codeforces Round 41
Educational Codeforces Round 41 D. Pair Of Lines 考虑先把凸包找出来,如果凸包上的点数大于\(4\)显然不存在解,小于等于\(2\)必然存在解 否则枚 ...
随机推荐
- Jupyter Notebook的快捷键
Jupyter Notebook 有两种键盘输入模式. 编辑模式,允许你往单元中键入代码或文本,这时的单元框线是绿色的. 命令模式,键盘输入运行程序命令:这时的单元框线是蓝色. 命令模式 ...
- java多线程的(一)-之java线程的使用
一.摘要 每天都和电脑打交道,也相信大家使用过资源管理器杀掉过进程.而windows本身就是多进程的操作系统 在这里我们理解两组基本概念: 1.进程和线程的区别???? 2.并行与并发的区别???? ...
- C/C++生成随机数
一.rand和srand 在C++11标准出来之前,C/C++都依赖于stdlib.h头文件的rand或者srand来生成随机数. 其不是真正的随机数,是一个伪随机数,是根据一个数(我们可以称 ...
- 20162302 实验一《Java开发环境的熟悉》实验报告
实 验 报 告 课程:程序设计与数据结构 姓名:杨京典 班级:1623 学号:20162302 实验名称:Java开发环境的熟悉 实验器材:装有Ubuntu的联想拯救者80RQ 实验目的与要求:1.使 ...
- C程序设计-----第1次作业
一. PTA作业. 在完成PTA作业的时候我没有认真读题.每次都是提交完整代码 6-1(1) #include <stdio.h> //P++等价于(p)++还是等价于*(p++)? ...
- 再议Python协程——从yield到asyncio
协程,英文名Coroutine.前面介绍Python的多线程,以及用多线程实现并发(参见这篇文章[浅析Python多线程]),今天介绍的协程也是常用的并发手段.本篇主要内容包含:协程的基本概念.协程库 ...
- token 验证
组件: https://jwt.io/#libraries-io
- android 运行时异常捕获
1,将运行时异常捕获并存到手机SD卡上 可以直接使用logcat 命令Runtime.getRuntime().exec("logcat -f "+ file.getAbsolut ...
- GIT入门笔记(13)- GUI GIT
- NHibernate从入门到精通系列(3)——第一个NHibernate应用程序
内容摘要 准备工作 开发流程 程序开发 一.准备工作 1.1开发环境 开发工具:VS2008以上,我使用的是VS2010 数据库:任意关系型数据库,我使用的是SQL Server 2005 Expre ...