Spark技术内幕: Task向Executor提交的源码解析
在上文《Spark技术内幕:Stage划分及提交源码分析》中,我们分析了Stage的生成和提交。但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑,即需要按照顺序计算的Stage,Stage中包含了可以以partition为单位并行计算的Task。我们并没有分析Stage中得Task是如何生成并且最终提交到Executor中去的。
这就是本文的主题。
从org.apache.spark.scheduler.DAGScheduler#submitMissingTasks开始,分析Stage是如何生成TaskSet的。
如果一个Stage的所有的parent stage都已经计算完成或者存在于cache中,那么他会调用submitMissingTasks来提交该Stage所包含的Tasks。
org.apache.spark.scheduler.DAGScheduler#submitMissingTasks的计算流程如下:
- 首先得到RDD中需要计算的partition,对于Shuffle类型的stage,需要判断stage中是否缓存了该结果;对于Result类型的Final Stage,则判断计算Job中该partition是否已经计算完成。
- 序列化task的binary。Executor可以通过广播变量得到它。每个task运行的时候首先会反序列化。这样在不同的executor上运行的task是隔离的,不会相互影响。
- 为每个需要计算的partition生成一个task:对于Shuffle类型依赖的Stage,生成ShuffleMapTask类型的task;对于Result类型的Stage,生成一个ResultTask类型的task
- 确保Task是可以被序列化的。因为不同的cluster有不同的taskScheduler,在这里判断可以简化逻辑;保证TaskSet的task都是可以序列化的
- 通过TaskScheduler提交TaskSet。
private[spark] class TaskSet(
val tasks: Array[Task[_]],
val stageId: Int,
val attempt: Int,
val priority: Int,
val properties: Properties) {
val id: String = stageId + "." + attempt override def toString: String = "TaskSet " + id
}
- org.apache.spark.scheduler.TaskSchedulerImpl#submitTasks
- org.apache.spark.scheduler.SchedulableBuilder#addTaskSetManager
- org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend#reviveOffers
- org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#makeOffers
- org.apache.spark.scheduler.TaskSchedulerImpl#resourceOffers
- org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#launchTasks
- org.apache.spark.executor.CoarseGrainedExecutorBackend.receiveWithLogging#launchTask
- org.apache.spark.executor.Executor#launchTask
def launchTask(
context: ExecutorBackend, taskId: Long, taskName: String, serializedTask: ByteBuffer) {
val tr = new TaskRunner(context, taskId, taskName, serializedTask)
runningTasks.put(taskId, tr)
threadPool.execute(tr) // 开始在executor中运行
}
final def run(attemptId: Long): T = {
context = new TaskContext(stageId, partitionId, attemptId, runningLocally = false)
context.taskMetrics.hostname = Utils.localHostName()
taskThread = Thread.currentThread()
if (_killed) {
kill(interruptThread = false)
}
runTask(context)
}
对于原来提到的两种Task,即
- org.apache.spark.scheduler.ShuffleMapTask
- org.apache.spark.scheduler.ResultTask
override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) metrics = Some(context.taskMetrics)
try {
func(context, rdd.iterator(partition, context))
} finally {
context.markTaskCompleted()
}
}
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
//此处的taskBinary即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的 metrics = Some(context.taskMetrics)
var writer: ShuffleWriter[Any, Any] = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) // 将rdd计算的结果写入memory或者disk
return writer.stop(success = true).get
} catch {
case e: Exception =>
if (writer != null) {
writer.stop(success = false)
}
throw e
} finally {
context.markTaskCompleted()
}
}
Spark技术内幕: Task向Executor提交的源码解析的更多相关文章
- Spark技术内幕: Task向Executor提交的源代码解析
在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓 ...
- 6.Spark streaming技术内幕 : Job动态生成原理与源码解析
原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/) Spark streaming 程序的运行过程是将DStream的操作转化成RDD的操作, ...
- Celery 源码解析三: Task 对象的实现
Task 的实现在 Celery 中你会发现有两处,一处位于 celery/app/task.py,这是第一个:第二个位于 celery/task/base.py 中,这是第二个.他们之间是有关系的, ...
- Spark技术内幕:Stage划分及提交源码分析
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...
- Spark技术内幕:Shuffle Map Task运算结果的处理
Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对 ...
- Spark技术内幕:Client,Master和Worker 通信源码解析
http://blog.csdn.net/anzhsoft/article/details/30802603 Spark的Cluster Manager可以有几种部署模式: Standlone Mes ...
- Spark技术内幕:Master的故障恢复
Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现 详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...
- Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法
上篇文章< Spark 源码解析 : DAGScheduler中的DAG划分与提交 >介绍了DAGScheduler的Stage划分算法. 本文继续分析Stage被封装成TaskSet, ...
- [Spark內核] 第42课:Spark Broadcast内幕解密:Broadcast运行机制彻底解密、Broadcast源码解析、Broadcast最佳实践
本课主题 Broadcast 运行原理图 Broadcast 源码解析 Broadcast 运行原理图 Broadcast 就是将数据从一个节点发送到其他的节点上; 例如 Driver 上有一张表,而 ...
随机推荐
- bzoj 1407: [Noi2002]Savage
Description 解题报告: 因为给定答案范围,暴力枚举时间,然后再两两枚举野人,判断是否有可能在某一年相遇,我们设这一年为\(x\),那么显然相交的条件是: \(x*(p[i]-p[j])+y ...
- Linux 基本概念和操作2
接着上一篇 "Linux 基本概念和操作" 1.删除文件 有时候我们想要删除的文件是只读文件,直接使用rm 文件名,会报错.这时使用" -f " 参数强制删除. ...
- target-densitydpi=device-dpi会使其他ui插件布局变小
target-densitydpi=device-dpi会使其他ui插件布局变小 东哥说:不用rem了,把meta改成这样<meta name="viewport" cont ...
- android高德地图网络路径实现自定义marker并点击弹出自定义窗口
android中使用地图的地方随处可见,今天记录一下网络路径生成自定义marker,点击标记弹出自定义的窗口(在这里使用的是高德地图) 在这里我们使用Grilde去加载网络图片,因为这个简直太方便了! ...
- 【Java关键字-Interface】为什么Interface中的变量只能是 public static final
三个关键字在接口中的存在原因:public:接口可以被其他接口继承,也可以被类实现,类与接口.接口与接口可能会形成多层级关系,采用public可以满足变量的访问范围: static:如果变量不是sta ...
- Spring--AOP 例子
先用代码讲一下什么是传统的AOP(面向切面编程)编程 需求:实现一个简单的计算器,在每一步的运算前添加日志.最传统的方式如下: Calculator.Java package cn.limbo.spr ...
- ES6(es2015)新增实用方法汇总
Array 1.map() [1,2,3,4].map(function(item, index, array){ return item * 2; }) 对数组中的每一项执行一次回调函数,三个参数 ...
- Android简易实战教程--第四十八话《Android - Timer、TimerTask和Handler实现倒计时》
之前本专栏文章中的小案例有写到:第三十九话<Chronometer实现倒计时> 以及使用异步实现倒计时:第三十三话< AsyncTask异步倒计时> 本篇文章 结合Timer. ...
- activiti源码分析
http://blog.csdn.net/vote/candidate.html?username=qq_30739519 欢迎大家投票吧谢谢
- Bootstrap3 排版-内联文本元素
标记文本 突出显示的文本由于其相关性在另一个上下文中,使用<mark>标记. You can use the mark tag to highlight text. You can use ...