题面

Background

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1

3 3

1 2 3

1 3 4

2 3 5

Sample Output

Scenario #1:

4

题解

题目大意:给定一张无向图,问从1号节点到N号节点的路径中,最短的边的最大值是多少。

直接求出最大生成树,输出即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 1100
#define MAXL MAX*MAX
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int u,v,dis;
}e[MAXL];
int f[MAX],cnt=0,N,M;
bool operator <(Line a,Line b)
{
return a.dis>b.dis;
}
int getf(int x)
{
return x==f[x]?x:f[x]=getf(f[x]);
}
void merge(int x,int y)
{
int a=getf(x);
int b=getf(y);
f[a]=b;
}
int main()
{
int T=read();
for(int ttt=1;ttt<=T;++ttt)
{
N=read();M=read();
for(int i=1;i<=M;++i)
e[i]=(Line){read(),read(),read()};
sort(&e[1],&e[M+1]);
for(int i=1;i<=N;++i)f[i]=i;
cnt=0;
for(int i=1;i<N;++i)
{
int x,y;
do
{x=getf(e[++cnt].u),y=getf(e[cnt].v);}
while(x==y);
merge(x,y);
if(getf(1)==getf(N))
{
printf("Scenario #%d:\n%d\n\n",ttt,e[cnt].dis);
break;
}
}
}
}

POJ 1791 Heavy Transportation(最大生成树)的更多相关文章

  1. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

  2. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  3. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  4. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  5. POJ 1797 Heavy Transportation(最大生成树/最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  6. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  7. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  8. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  9. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

随机推荐

  1. [Python Study Notes]内存信息

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  2. ansible 检查大量客户端的文件与配置情况

    ansible pro_adservers -m command -a 'w' ansible pro_adservers -m command -a 'hostname' ansible pro_a ...

  3. PyCharm安装及使用

    搭建环境 1.win10_X64,其他Win版本也可以. 2.PyCharm版本:Professional-2016.2.3. 搭建准备 1.到PyCharm官网下载PyCharm安装包.   Dow ...

  4. angularjs MVC、模块化、依赖注入详解

    一.MVC <!doctype html> <html ng-app> <head> <meta charset="utf-8"> ...

  5. dubbo filter实现接口认证springboot idea

    最近公司有业务需求,要对Dubbo接口调用者进行身份验证,验证通过才能调用,网上一些资料不够全面,遂整理了一下. 在provider方定义一个filter,需要实现com.alibaba.dubbo. ...

  6. bzoj 1307/1318 玩具 线段树+记录时间戳

    玩具 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 743  Solved: 404[Submit][Status][Discuss] Descrip ...

  7. Linux服务器上安装MySql数据库(默认安装,密码为空),首次使用需要修改密码

    1,在/etc/my.cnf末尾  加入skip-grant-tables,保存,跳过身份验证. 2,重启MySql,使刚才修改的配置生效. 3,终端输入mysql,然后再输入use mysql; 4 ...

  8. JVM笔记5-对象的访问定位。

    java虚拟机中指定一个栈内存的引用指向了堆内存中的对象.这样说只是笼统的说法.而指向堆内存中的对象就一定是栈引用所需要的那个对象吗?其实并不定. 这就需要知道对象的访问定位方式有两种: 1.使用句柄 ...

  9. bash文件的详细解读

    一.bash的分类 1. 按生效范围分类 全局生效 /etc/profile /etc/profile.d/*.sh /etc/bashrc 个人用户生效 ~/.bash_profile ~/.bas ...

  10. redis下载安装以及添加服务

    一.下载安装 从 github 下载:https://github.com/MSOpenTech/redis/releases 或者 https://github.com/ServiceStack/r ...