Description

  某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

  第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n <= 200000, m <= 100000

Output

  对于每个i=1的情况,你都要输出一个需要的步数,占一行。

Sample Input

4
1 2 1 1
3
1 1
2 1 1
1 1

Sample Output

2
3

HINT

Source

Solution

  每个点和可以到达的点连一条边,支持动态链上查询,LCT大法好

  用和splay一样的方法维护子树大小siz即可。

  感谢Ngshily大吔爷的版子!!!

 #include <bits/stdc++.h>
using namespace std;
struct LCT
{
int c[], fa, rev, siz;
int& operator [] (int i)
{
return c[i];
}
}a[];
int sta[], top, nxt[]; void scanf(int *x)
{
char ch = getchar();
*x = ;
while(ch < '' || ch > '')
ch = getchar();
while(ch >= '' && ch <= '')
*x = *x * + ch - , ch = getchar();
} void push_up(int k)
{
a[k].siz = a[a[k][]].siz + a[a[k][]].siz + ;
} void push_down(int k)
{
if(a[k].rev)
{
a[a[k][]].rev ^= , a[a[k][]].rev ^= ;
swap(a[k][], a[k][]), a[k].rev = ;
}
} bool isroot(int x)
{
return a[a[x].fa][] != x && a[a[x].fa][] != x;
} void rotate(int x)
{
int y = a[x].fa, z = a[y].fa;
int dy = a[y][] == x, dz = a[z][] == y;
if(!isroot(y)) a[z][dz] = x;
a[y][dy] = a[x][dy ^ ], a[a[x][dy ^ ]].fa = y;
a[x][dy ^ ] = y, a[y].fa = x, a[x].fa = z;
push_up(y);
} void splay(int x)
{
sta[top = ] = x;
for(int i = x; !isroot(i); i = a[i].fa)
sta[++top] = a[i].fa;
while(top)
push_down(sta[top--]);
while(!isroot(x))
{
int y = a[x].fa, z = a[y].fa;
if(!isroot(y))
if(a[y][] == x ^ a[z][] == y) rotate(x);
else rotate(y);
rotate(x);
}
push_up(x);
} void access(int x)
{
for(int i = ; x; x = a[x].fa)
splay(x), a[x][] = i, i = x;
} void make_root(int x)
{
access(x), splay(x), a[x].rev ^= ;
} int find_root(int x)
{
access(x), splay(x);
while(a[x][])
x = a[x][];
return x;
} void link(int x, int y)
{
make_root(x), a[x].fa = y;
} void cut(int x, int y)
{
make_root(x), access(y), splay(y), a[y][] = a[x].fa = ;
} int main()
{
int n, m, x, y, op;
scanf(&n);
for(int i = ; i <= n; i++)
{
scanf(&x), a[i].siz = ;
a[i].fa = nxt[i] = min(i + x, n + );
}
scanf(&m), a[n + ].siz = ;
while(m--)
{
scanf(&op), scanf(&x), x++;
if(op == )
{
make_root(n + ), access(x), splay(x);
printf("%d\n", a[x].siz - );
}
else
{
scanf(&y), cut(nxt[x], x);
nxt[x] = min(x + y, n + );
link(nxt[x], x);
}
}
return ;
}

[BZOJ2002] [Hnoi2010] Bounce 弹飞绵羊 (LCT)的更多相关文章

  1. [BZOJ2002][Hnoi2010]Bounce弹飞绵羊 LCT

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 建图,每次往后面跳就往目标位置连边,将跳出界的点设为同一个点.对于修改操作发现可以用 ...

  2. BZOJ2002 Hnoi2010 Bounce 弹飞绵羊 【LCT】【分块】

    BZOJ2002 Hnoi2010 Bounce 弹飞绵羊 Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始, ...

  3. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  4. [bzoj2002][Hnoi2010]Bounce弹飞绵羊_LCT

    Bounce弹飞绵羊 bzoj-2002 Hnoi-2010 题目大意:n个格子,每一个格子有一个弹簧,第i个格子会将经过的绵羊往后弹k[i]个,达到i+k[i].如果i+k[i]不存在,就表示这只绵 ...

  5. bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 [分块][LCT]

    Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...

  6. BZOJ2002: [Hnoi2010]Bounce 弹飞绵羊(LCT)

    Description 某天,Lostmonkey发明了一种超级弹力装置,为了在 他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装 ...

  7. [bzoj2002][Hnoi2010]Bounce弹飞绵羊——分块

    Brief description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装 ...

  8. bzoj2002 [Hnoi2010]Bounce 弹飞绵羊【分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 这一题除了LCT解法,还有一种更巧妙,代码量更少的解法,就是分块.先想,如果仅仅记录每 ...

  9. bzoj2002 [Hnoi2010]Bounce 弹飞绵羊——分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2002 第一次用分块,感觉超方便啊: 如果记录每个点的弹力系数,那么是O(1)修改O(n)查询 ...

随机推荐

  1. 搭建dnsmasq服务器,局域网内部解析

    系统:centos6.5 公司内部需求一台dns server,解析内部域名(该域名不需要在公网上解析) 安装了"bind bind-utils"包,配置里设置转发到外部电信dns ...

  2. 使用PowerDesigner对NAME和COMMENT互相转换

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 在使用PowerDesigner对数据库进行概念模型和物理模型设计时 ...

  3. 8、flask之flask-script组件

    Flask Script扩展提供向Flask插入外部脚本的功能,包括运行一个开发用的服务器,一个定制的Python shell,设置数据库的脚本,cronjobs,及其他运行在web应用之外的命令行任 ...

  4. Python 中的闭包

    通常来说,函数中的局部变量在函数调用结束的时候不能再被引用,所分配的空间也会被回收. 但是通过闭包这种技术,函数调用结束了,它的局部变量的值还可以保存在闭包里. 试举一例: def make_adde ...

  5. bzoj 1814 Ural 1519 Formula 1 插头DP

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 942  Solved: 356[Submit][Sta ...

  6. web1 - HTML&CSS

    Brackets 编辑器的安装和使用 Emmet:HTML/CSS代码快速编写 HTML && CSS

  7. java3 - 流程控制

    一.Java 有三种主要的循环结构: 需求:分别使用三种循环将 1 到 100 的整数输出到控制台. 1.for 循环 for(初始化语句; 布尔表达式语句; 更新语句) { //循环体内容 } 示列 ...

  8. #pragma预处理命令

    #pragma comment(lib,"XXX.lib") 表示链接XXX.lib这个库,和在工程设置里写上XXX.lib的效果一样. #pragma comment(linke ...

  9. onclick与this

    这个其实也是一个很基础的问题,不过又碰巧遇到了,所以记录一下. 假设我们有这么一个需求,按下按钮,弹出提示框,显示按钮的value值. 可能有一些人提起笔就写: <button onclick= ...

  10. R实战 第三篇:数据处理

    在实际分析数据之前,必须对数据进行清理和转化,使数据符合相应的格式,提高数据的质量.数据处理通常包括增加新的变量.处理缺失值.类型转换.数据排序.数据集的合并和获取子集等. 一,增加新的变量 通常需要 ...