Retinex图像增强算法代码
http://www.cnblogs.com/sleepwalker/p/3676600.html?utm_source=tuicool
http://blog.csdn.net/carson2005/article/details/9502053
Retinex理论
Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关。Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或是与两者都有关系。
Land的Retinex模型是建立在以下的基础之上的:
一、真实世界是无颜色的,我们所感知的颜色是光与物质的相互作用的结果。我们见到的水是无色的,但是水膜—肥皂膜却是显现五彩缤纷,那是薄膜表面光干涉的结果;
二、每一颜色区域由给定波长的红、绿、蓝三原色构成的;
三、三原色决定了每个单位区域的颜色。
Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。如下图所示,观察者所看到的物体的图像S是由物体表面对入射光L反射得到的,反射率R由物体本身决定,不受入射光L变化。
本来想把下面的代码改成opencv版本的,但是不太会把读出来的mat里面数据改成BYTE*里面,在主函数里面写的一点都注释了
// Retinex.cpp : Defines the entry point for the console application.
// #include "stdafx.h" #include <stdio.h>
#include <string.h>
#include <windows.h>
#include <cmath>
#include <time.h>
#include <iostream> #include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp" #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib") using namespace std;
using namespace cv; #define EPSILON 1
#define DELTA 1
#define GAMMA 0.9
#define PI 3.1415926
#define ALPHA_c 1 //////////////////////////
// Read a 8 bit bmp File
//////////////////////////
BYTE *Read8BitBmpFile2Img(const char * filename,int *width,int *height)
{ FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
BYTE *img;
int size;
int Suc=1;
// Open File
*width=*height=0;
if((BinFile=fopen(filename,"rb"))==NULL) return NULL;
// Read Struct Info
if (fread((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=-1;
if (fread((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=-1;
if (Suc==-1) { fclose(BinFile); return NULL; }
// Read Image Data
*width=(BmpHeader.biWidth+3)/4*4;
*height=BmpHeader.biHeight;
size=(BmpHeader.biWidth+3)/4*4*BmpHeader.biHeight;
fseek(BinFile,FileHeader.bfOffBits,SEEK_SET);
if ( (img=new BYTE[size+8])!=NULL)
{ if(fread(img+8-int(img)%8,sizeof(BYTE),size,BinFile)!=(unsigned int)size)
{ fclose(BinFile);
delete img;
img=NULL;
return NULL;
}
}
fclose(BinFile);
return img;
} /////////////////////////
// Write a 8 bit bmp File
/////////////////////////
int Write8BitImg2BmpFile(BYTE *img,int width,int height,const char * filename)
{ FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
BYTE p[4];
int i,Suc=1; // Open File
if((BinFile=fopen(filename,"w+b"))==NULL) { return -1; }
// Fill the FileHeade)
FileHeader.bfType= ((WORD) ('M' << 8) | 'B');
FileHeader.bfOffBits=sizeof(BITMAPFILEHEADER)+sizeof(BmpHeader)+256*4L;
FileHeader.bfSize=FileHeader.bfOffBits+width*height ;
FileHeader.bfReserved1=0;
FileHeader.bfReserved2=0;
if (fwrite((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=-1;
// Fill the ImgHeader
BmpHeader.biSize = 40;
BmpHeader.biWidth = width;
BmpHeader.biHeight = height;
BmpHeader.biPlanes = 1 ;
BmpHeader.biBitCount = 8 ;
BmpHeader.biCompression = 0 ;
BmpHeader.biSizeImage = 0 ;
BmpHeader.biXPelsPerMeter = 0;
BmpHeader.biYPelsPerMeter = 0;
BmpHeader.biClrUsed = 0;
BmpHeader.biClrImportant = 0;
if (fwrite((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=-1;
// write Pallete
for (i=0,p[3]=0;i<256;i++)
{
p[3]=0;
p[0]=p[1]=p[2]=i; // blue,green,red;
if (fwrite((void *)p,1,4,BinFile)!=4) { Suc=-1; break; }
}
// write image data
if (fwrite((void *)img,1,width*height,BinFile)!=(unsigned int) width*height) Suc=-1;
// return;
fclose(BinFile);
return Suc;
} //////////////////////////
// Read a 24 bit bmp File
//////////////////////////
BYTE *Read24BitBmpFile2Img(const char * filename,int *width,int *height)
{
FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
BYTE *img;
int size;
int Suc=1; // Open File
*width=*height=0;
if((BinFile=fopen(filename,"rb"))==NULL) return NULL;
// Read Struct Info
if (fread((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=-1;
if (fread((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=-1;
if (Suc==-1) { fclose(BinFile); return NULL; }
// Read Image Data
*width=(BmpHeader.biWidth+3)/4*4;
*height=BmpHeader.biHeight;
size=(*width)*(*height)*3;
fseek(BinFile,FileHeader.bfOffBits,SEEK_SET);
if ( (img=new BYTE[size+8])!=NULL)
{
if(fread(img+8-int(img)%8,sizeof(BYTE),size,BinFile)!=(unsigned int)size)
{
fclose(BinFile);
delete img;
img=NULL;
return NULL;
}
}
fclose(BinFile);
return img;
}
//////////////////////////
// write a 24 bit bmp File
//////////////////////////
bool Write24BitImg2BmpFile(BYTE *img,int width,int height,const char * filename)
{
FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
bool Suc=true;
int y,i,extend;
BYTE *pCur; // Open File
if((BinFile=fopen(filename,"w+b"))==NULL) { return false; }
// Fill the FileHeader
FileHeader.bfType= ((WORD) ('M' << 8) | 'B');
FileHeader.bfOffBits=sizeof(BITMAPFILEHEADER)+sizeof(BmpHeader);
FileHeader.bfSize=FileHeader.bfOffBits+width*height*3L ;
FileHeader.bfReserved1=0;
FileHeader.bfReserved2=0;
if (fwrite((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=false;
// Fill the ImgHeader
BmpHeader.biSize = 40;
BmpHeader.biWidth = width;
BmpHeader.biHeight = height;
BmpHeader.biPlanes = 1 ;
BmpHeader.biBitCount = 24 ;
BmpHeader.biCompression = 0 ;
BmpHeader.biSizeImage = 0 ;
BmpHeader.biXPelsPerMeter = 0;
BmpHeader.biYPelsPerMeter = 0;
BmpHeader.biClrUsed = 0;
BmpHeader.biClrImportant = 0;
if (fwrite((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=false;
// write image data
extend=(width+3)/4*4-width;
if (extend==0)
{
if (fwrite((void *)img,1,width*height*3,BinFile)!=(unsigned int)3*width*height) Suc=false;
}
else
{
for(y=0,pCur=img;y<height;y++,pCur+=3*width)
{
if (fwrite((void *)pCur,1,width*3,BinFile)!=(unsigned int)3*width) Suc=false; // 真实的数据
for(i=0;i<extend;i++) // 扩充的数据
{
if (fwrite((void *)(pCur+3*(width-1)+0),1,1,BinFile)!=1) Suc=false;
if (fwrite((void *)(pCur+3*(width-1)+1),1,1,BinFile)!=1) Suc=false;
if (fwrite((void *)(pCur+3*(width-1)+2),1,1,BinFile)!=1) Suc=false;
}
}
}
// return;
fclose(BinFile);
return Suc;
} //////////////////////////
// Logarithm Transform
// OrgImg: point to original image
// widht: the width of the image
// height:the height of the image
// LogImg: point to logarithm transform of the image
//////////////////////////
void LogarithmTransform(int *OrgImg,int width,int height,int *LogImg)
{
int *pLog=LogImg,*pCur=OrgImg;
int i,size,temp;
size=width*height;
for(i=0;i<size;i++)
{
temp=*pCur++;
if(temp==0) *pLog++=0;
else *pLog++=log(float(temp))*2048;
}
return;
}
////////////////////////////////
// 计算窗口内像素灰度和
////////////////////////////////
void Ini(BYTE *pOrgImg,int width,int height,int *sum)
{
int i,j;
BYTE *pCur;
pCur=pOrgImg;
*sum=*pCur;
for(i=1;i<height;i++)
*(sum+i*width)=*(sum+(i-1)*width)+*(pCur+i*width);
for(j=1;j<width;j++)
*(sum+j)=*(sum+j-1)+*(pCur+j);
for(i=1;i<height;i++)
{
for(j=1;j<width;j++)
{
*(sum+i*width+j)=*(sum+(i-1)*width+j)+*(sum+i*width+j-1)-*(sum+(i-1)*width+j-1)+*(pCur+i*width+j); //卷积计算
}
}
return;
} //////////////////////////
// 局部非线性对比度增强
//////////////////////////
void LocalNonlinearStretch(BYTE *OrgImg,int width,int height,int *ResData)
{
int i,j,k,s,size=width*height;
int *pData,*sum,sum1;
double avg,min,max,nor;
BYTE *pCur=OrgImg;
sum=new int[width*height];
pData=ResData+width+1;
// Ini(OrgImg,width,height,sum);
for(i=0;i<height-2;i++,pCur+=2,pData+=2)
{
min=*pCur;
max=*pCur;
for(k=0;k<3;k++)
{
for(s=0;s<3;s++)
{
if(*(pCur+k*width+s)<min) min=*(pCur+k*width+s);
else if(*(pCur+k*width+s)>max) max=*(pCur+k*width+s);
}
}
sum1=(*pCur+*(pCur+1)+*(pCur+2)+*(pCur+width)+*(pCur+width+1)+*(pCur+width+2)+*(pCur+width*2)+*(pCur+width*2+1)+*(pCur+width*2+2));
avg=(sum1-*(pCur+width+1))/8.0;
nor=(*(pCur+width+1)-min+1)/double(max-min+1);
*pData=(*(pCur+width+1)+(*(pCur+width+1)-avg)*pow((nor+EPSILON),DELTA)+0.5)*2048;
pCur++;
pData++;
for(j=1;j<width-2;j++,pCur++,pData++)
{
min=*pCur;
max=*pCur;
for(k=0;k<3;k++)
{
for(s=0;s<3;s++)
{
if(*(pCur+k*width+s)<min) min=*(pCur+k*width+s);
else if(*(pCur+k*width+s)>max) max=*(pCur+k*width+s);
}
sum1=sum1-*(pCur+k*width-1)+*(pCur+k*width+2);
}
// avg=((*(sum+(i+3)*width+j+3)-*(sum+i*width+j+3)-*(sum+(i+3)*width+j)+*(sum+i*width+j))-*(pCur+width+1))/8.0;
// avg=(*pCur+*(pCur+1)+*(pCur+2)+*(pCur+width)+*(pCur+width+2)+*(pCur+width*2)+*(pCur+width*2+1)+*(pCur+width*2+2))/8.0; // s/8.0*256
avg=(sum1-*(pCur+width+1))/8.0;
nor=(*(pCur+width+1)-min+1)/double(max-min+1);
*pData=(*(pCur+width+1)+(*(pCur+width+1)-avg)*pow((nor+EPSILON),DELTA)+0.5)*2048;
}
}
delete sum;
return;
}
//////////////////////////
// Gaussian Template
//////////////////////////
void GaussianTemplate(int *Template,int Tsize,double c)
{
int *pCur;
double Lemda,c1=c*c;
int i,j;
Lemda=0;
for(pCur=Template,i=-((Tsize-1)>>1);i<=((Tsize-1)>>1);i++)
{
for(j=-((Tsize-1)>>1);j<=((Tsize-1)>>1);j++,pCur++)
{
*pCur=(exp(-(i*i+j*j)/c1))*2048;
Lemda+=*pCur;
}
}
Lemda=2048.0/Lemda;
for(pCur=Template,i=0;i<Tsize*Tsize;i++,pCur++)
{
*pCur=Lemda*(*pCur);
} return;
} //////////////////////////
// 3*3 Gaussian Template
//////////////////////////
void GaussianTemplate2(int *Template,double c)
{
int *pCur;
double Lemda,c1=c*c;
int i,j;
Lemda=1.0/sqrt(c*c*PI)*0.7*2048;
for(pCur=Template,i=-1;i<=1;i++)
{
for(j=-1;j<=1;j++)
{
*pCur++=Lemda*exp(-(i*i+j*j)/c1);
} }
return;
} //////////////////////////
// 单尺度Retinex
// OrgImg: point to original image
// widht: the width of the image
// height: the height of the image
// ResImg: point to the result image
//////////////////////////
void SSR(int *LogImg,BYTE *OrgImg,int width,int height,int *ResData,int *Template,int Tsize)
{
BYTE *pCur=OrgImg;
int i,j,k,s,size=width*height;
int temp,*pData,*pCtr,*ptmp,*pRes,temp2;
double r=1.0/GAMMA;
memset(ResData,0,sizeof(int)*width*height);
pRes=ResData+((Tsize-1)/2)*width+((Tsize-1)/2);
pCtr=LogImg+((Tsize-1)/2)*width+((Tsize-1)/2);
ptmp=Template;
for(i=(Tsize-1)/2;i<height-((Tsize-1)/2);i++,pRes+=Tsize-1,pCtr+=Tsize-1,pCur+=Tsize-1)
{
for(j=(Tsize-1)/2;j<width-((Tsize-1)/2);j++,pRes++,pCtr++,pCur++)
{
temp=0;
ptmp=Template;
for(k=0;k<Tsize;k++)
{
for(s=0;s<Tsize;s++)
{
temp+=(*(pCur+k*width+s)*(*ptmp++));
}
}
if(temp==0) *pRes=exp(pow(*pCtr>>11,r));
else
{
temp2=(*pCtr)-(log(float(temp>>22)))*2048;
if(temp2>0) *pRes=(exp(pow((temp2>>11),r)))*2048+(temp>>11);
else if(temp2<0) *pRes=exp(0-pow(0-(temp2>>11),r))*2048+(temp>>11);
else *pRes=(temp>>11);
}
}
}
//四边不处理
for(i=0,pRes=ResData,pCur=OrgImg;i<width*(Tsize-1)/2;i++,pCur++,pRes++)
{
*pRes=*pCur;
}
for(i=(Tsize-1)/2;i<height-(Tsize-1)/2;i++)
{
for(j=0;j<(Tsize-1)/2;j++)
{
*pRes++=*pCur++;
}
pRes+=width-(Tsize-1);
pCur+=width-(Tsize-1);
for(j=0;j<(Tsize-1)/2;j++)
{
*pRes++=*pCur++;
}
}
for(i=0;i<width*(Tsize-1)/2;i++)
{
*pRes++=*pCur++;
}
return;
}
/////////////////////////
// Get Mean And Deviance
/////////////////////////
void GetMeanAndDeviance(int *Temp,int width,int height,int Tsize,int *mean,int *dev)
{
int i,j,size;
size=(width-(Tsize-1))*(height-(Tsize-1));
int *t;
long double sum;
for(t=Temp+(Tsize-1)/2*width+(Tsize-1)/2,sum=0,i=(Tsize-1)/2;i<(height-(Tsize-1)/2);i++,t+=Tsize-1)
{
for(j=(Tsize-1)/2;j<width-(Tsize-1)/2;j++)
{
sum+=*t++;
}
}
*mean=sum/size;
for(t=Temp+(Tsize-1)/2*width+(Tsize-1)/2,sum=0,i=(Tsize-1)/2;i<height-(Tsize-1)/2;i++,t+=Tsize-1)
{
for(j=(Tsize-1)/2;j<width-(Tsize-1)/2;j++)
{
sum+=pow(float(*t-*mean),2);
}
}
*dev=sqrt(sum/size);
return;
} /////////////////////////
// Linear Stretch
// Temp: point to the image before stratching
// widht: the width of the image
// height: the height of the image
// ResImg: point to the resultant image
/////////////////////////
void LinearStretch(int *Temp,int width,int height,int *mean,int *dev,BYTE *ResImg)
{
BYTE *pRes;
int *t,min,max,temp,c;
int i,size=width*height;
min=*mean-3*(*dev);
max=*mean+3*(*dev);
c=255.0/(max-min)*2048;
for(pRes=ResImg,t=Temp,i=0;i<size;i++,t++,pRes++)
{
temp=((*t-min)*c)>>11;
if(temp>255) *pRes=255;
else if(temp<0) *pRes=0;
else *pRes=temp;
} return;
} /*
//////////////////////////
// GAMMA Correction
//////////////////////////
void GammaCorrection(double *OrgData,int width,int heihgt,double *ResData)
{
int i,size;
double *pOrg,*pRes;
for(i=0,pOrg=OrgDat,pRes=ResData;i<size;i++)
{
*pRes++=pow(*pOrg++,1.0/GAMMA);
}
}
*/
//////////////////////////
// Contrast
//////////////////////////
void Contrast(BYTE *OrgImg,int x,int y,int width,int height,int blockw,int blockh,double &wcontrast,double &mcontrast)
{
BYTE *pCur=OrgImg+x*blockw+y*width*blockh;
double min=10000,max=-1;
int i,j; for(i=0;i<blockh;i++,pCur=pCur+width-blockw)
{
for(j=0;j<blockw;j++,pCur++)
{
if(*pCur<min) min=*pCur;
if(*pCur>max) max=*pCur;
}
}
mcontrast=(max-min+1)/(max+min+1);
if(min==0) wcontrast=(max+5)/(min+5);
else wcontrast=max/min; return;
} //////////////////////////
// Measure of Performance
//////////////////////////
void Measure(BYTE *ResImg,int width,int height,double &emee,double &ame)
{
int k1=8,k2=8,i,j,blockw,blockh;
double wcontrast,mcontrast;
blockw=width/k2;
blockh=height/k1;
emee=0;
ame=0;
for(i=0;i<k1;i++)
{
for(j=0;j<k2;j++)
{
Contrast(ResImg,i,j,width,height,blockw,blockh,wcontrast,mcontrast);
emee+=pow(wcontrast,ALPHA_c)*log(wcontrast);
ame+=pow(mcontrast,ALPHA_c)*log(mcontrast);
}
}
emee=ALPHA_c*emee/(k1*k2);
ame=ALPHA_c*ame/(k1*k2);
return ;
} /////////////////////////
// Gray Image Process
/////////////////////////
void GrayImageProcess(BYTE *OrgImg,int width,int height,BYTE *ResImg)
{
int *Data,*LogImg,*Template,mean,dev;
int Tsize;
double c;
Tsize=5;
c=20;
Template=new int[Tsize*Tsize];
Data=new int[width*height];
LogImg=new int[width*height];
LocalNonlinearStretch(OrgImg,width,height,Data);
LogarithmTransform(Data,width,height,LogImg);
//GaussianTemplate(Template,Tsize,c);
GaussianTemplate2(Template,0.5);Tsize=3;
SSR(LogImg,OrgImg,width,height,Data,Template,Tsize);
GetMeanAndDeviance(Data,width,height,Tsize,&mean,&dev);
LinearStretch(Data,width,height,&mean,&dev,ResImg);
delete Template;
delete Data;
delete LogImg;
return;
} /////////////////////////
// Color Image Process
/////////////////////////
void ColorImageProcess(BYTE *OrgImg,int width,int height,BYTE *ResImg)
{
BYTE *Value;
int i,j,Tsize,temp;
int *Data,*LogImg,*Template,*Percent,mean,dev;
double c,emee,ame;
Tsize=5;
c=0.75;
Template=new int[Tsize*Tsize];
Data=new int[width*height];
LogImg=new int[width*height];
Percent=new int[width*height*3];
Value=new BYTE[width*height];
memset(Value,0,sizeof(BYTE)*width*height);
for(j=0;j<width*height;j++)
{
temp=0;
for(i=0;i<3;i++)
{
temp+=*(OrgImg+j*3+i);
}
for(i=0;i<3;i++)
{
*(Percent+j*3+i)=*(OrgImg+j*3+i)/double(temp)*2048;
*(Value+j)+=(*(OrgImg+j*3+i)*(*(Percent+j*3+i)))>>11;
}
}
LocalNonlinearStretch(Value,width,height,Data);
LogarithmTransform(Data,width,height,LogImg);
// GaussianTemplate(Template,Tsize,c);
GaussianTemplate2(Template,0.5);Tsize=3;
SSR(LogImg,Value,width,height,Data,Template,Tsize);
GetMeanAndDeviance(Data,width,height,Tsize,&mean,&dev);
LinearStretch(Data,width,height,&mean,&dev,Value);
for(j=0;j<width*height;j++)
{
for(i=0;i<3;i++)
{
temp=(*(Percent+j*3+i)*(*(Value+j))*3)>>11;
if(temp>255) *(ResImg+j*3+i)=255;
else *(ResImg+j*3+i)=temp;
}
}
printf("*****彩色图像三通道联合处理结果******************\n");
Measure(Value,width,height,emee,ame);
cout<<"EMEE:"<<emee<<endl;
delete Template;
delete Data;
delete LogImg;
delete Value;
delete Percent;
return;
} //////////////////////////
// Color Image process 2
// 三通道分别处理
//////////////////////////
void ColorImageProcess2(BYTE *OrgImg,int width,int height,BYTE *ResImg)
{
BYTE *Value;
int i,j,Tsize;
int *Data,*LogImg,*Template,mean,dev;
double c,emee=0,ame=0,x1,x2;
Tsize=5;
c=0.5;
Template=new int[Tsize*Tsize];
Value=new BYTE[width*height];
Data=new int[width*height];
LogImg=new int[width*height];
GaussianTemplate(Template,Tsize,c);
// GaussianTemplate2(Template,0.5); Tsize=3;
for(i=0;i<3;i++)
{
for(j=0;j<width*height;j++)
{
*(Value+j)=*(OrgImg+j*3+i);
}
LocalNonlinearStretch(Value,width,height,Data);
LogarithmTransform(Data,width,height,LogImg);
SSR(LogImg,Value,width,height,Data,Template,Tsize);
GetMeanAndDeviance(Data,width,height,Tsize,&mean,&dev);
LinearStretch(Data,width,height,&mean,&dev,Value);
Measure(Value,width,height,x1,x2);
emee+=x1;
ame+=x2;
for(j=0;j<width*height;j++)
{
*(ResImg+j*3+i)=*(Value+j);
}
}
printf("*****彩色图像三通道分别处理结果******************\n");
cout<<"EMEE:"<<emee/3.0<<endl;
delete Template;
delete Value;
delete Data;
delete LogImg;
return;
}
//////////////////////////
// main
//////////////////////////
int main()
{
BYTE *OrgImg,*ResImg,*p1,*p2;
int width,height,i,j,suc,area1,area2,Tsize;
bool isRGB,ret;
clock_t t1,t2;
double emee,ame;
char ch;
int *offsetdata=new int[2];
for(i=0;i<2;i++)
{
*(offsetdata+i)=0X80808080;
}
system( "cls" );
printf("******中心/环绕Retienx算法******************\n");
printf(" 1.处理灰度图像\n");
printf(" 2.处理彩色图像\n");
printf("*********************************************\n");
printf("请选择(1或2): ");
do
{
cin>>ch;
}while( ch != '1' && ch != '2'); //system ( "cls" ); if ( ch == '1')
isRGB=false;
else if ( ch == '2')
isRGB=true;
// open file string image_name;
cout<<endl<<"输入图像名:";
cin>>image_name; //Mat image_dst; //if (!isRGB)
//{
// image_dst = imread(image_name,0);
//}
//else
//{
// image_dst = imread(image_name,1);
//} //
//
//if(image_dst.empty())
//{
// return -1;
//} //是否加载成功 //imshow(image_name,image_dst);
// // width = image_dst.cols;
// height = image_dst.rows;
//int channel = image_dst.channels();
// int step = width * channel* 1;
//uchar* ps = NULL;
//
//p1 = new BYTE[width*height*channel+8]; //for (int i = 0; i < height; i++)
//{
// ps = image_dst.ptr<uchar>(i);
// for (int j = 0; j < width; j++)
// {
// if (1 == channel)
// {
// *(p1 + i*step + j) = ps[j];
//
// }
// else if (3 == channel)
// {
// *(p1 + i*step + j*3) = ps[j*3 + 2];
// *(p1 + i*step + j*3 + 1) = ps[j*3 + 1];
// *(p1 + i*step + j*3 + 2) = ps[j*3];
// }
// }
//} if(!isRGB)
p1=Read8BitBmpFile2Img(image_name.c_str(),&width,&height);
else
p1=Read24BitBmpFile2Img(image_name.c_str(),&width,&height); if (p1==NULL)
{
printf("*fopen err!\n");
delete p1;
return 0;
}
if(width%64!=0||height%64!=0)
{
cout<<"图像大小需是64的倍数"<<endl;
delete p1;
return 0;
} area1=width*height; if(!isRGB)
{
OrgImg=p1+8-int(p1)%8;
p2=new BYTE[width*height+8];
ResImg=p2+8-int(p2)%8;
t2=clock();
GrayImageProcess(OrgImg,width,height,ResImg);
t1=clock();
printf("*****灰度图像处理结果******************\n");
cout<<"运行时间:"<<t1-t2<<"ms"<<endl;
Measure(ResImg,width,height,emee,ame);
cout<<"EMEE:"<<emee<<endl;
suc=Write8BitImg2BmpFile(ResImg,width,height,"result_1.bmp");
}
else
{
OrgImg=p1+8-int(p1)%8;
p2=new BYTE[width*height*3+8];
ResImg=p2+8-int(p2)%8;
t2=clock();
ColorImageProcess(OrgImg,width,height,ResImg);
t1=clock();
cout<<"运行时间:"<<t1-t2<<"ms"<<endl;
t2=clock();
suc=Write24BitImg2BmpFile(ResImg,width,height,"result_1.bmp");
ColorImageProcess2(OrgImg,width,height,ResImg);
t1=clock();
cout<<"运行时间:"<<t1-t2<<"ms"<<endl;
suc=Write24BitImg2BmpFile(ResImg,width,height,"result_2.bmp");
}
if(suc==-1)
{
printf("*fwrite err!\n");
} Mat result1 = imread("result_1.bmp",1);
Mat result2 = imread("result_2.bmp",1); imshow("result1",result1);
imshow("result2",result2);
//release mem
delete p1;
delete p2; waitKey(0);
return 0;
}
后面用opencv改写了一下主要想把像素数据写到BYTE *指向的内存空间中,这样的话可以加载其他格式的图像文件了:但是出现了一些问题,可能跟之前作者代码里面的限制有关,必须是64的倍数。还写了一个功能实现把像素数据写到txt中保存下来,各位凑活看。
参见帖子:
http://bbs.csdn.net/topics/391005171
http://bbs.csdn.net/topics/391004682
代码如下:
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include <cmath>
#include <time.h>
#include <iostream> #include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp" #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib") using namespace std;
using namespace cv; #define EPSILON 1
#define DELTA 1
#define GAMMA 0.9
#define PI 3.1415926
#define ALPHA_c 1 int size_mem = 0; //////////////////////////
// Read a 8 bit bmp File
//////////////////////////
BYTE *Read8BitBmpFile2Img(const char * filename,int *width,int *height)
{ FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
BYTE *img;
int size;
int Suc=1;
// Open File
*width=*height=0;
if((BinFile=fopen(filename,"rb"))==NULL) return NULL;
// Read Struct Info
if (fread((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=-1;
if (fread((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=-1;
if (Suc==-1) { fclose(BinFile); return NULL; }
// Read Image Data
*width=(BmpHeader.biWidth+3)/4*4;
*height=BmpHeader.biHeight;
size=(BmpHeader.biWidth+3)/4*4*BmpHeader.biHeight;
fseek(BinFile,FileHeader.bfOffBits,SEEK_SET);
if ( (img=new BYTE[size+8])!=NULL)
{ if(fread(img+8-int(img)%8,sizeof(BYTE),size,BinFile)!=(unsigned int)size)
{ fclose(BinFile);
delete img;
img=NULL;
return NULL;
}
}
fclose(BinFile);
return img;
} /////////////////////////
// Write a 8 bit bmp File
/////////////////////////
int Write8BitImg2BmpFile(BYTE *img,int width,int height,const char * filename)
{ FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
BYTE p[4];
int i,Suc=1; // Open File
if((BinFile=fopen(filename,"w+b"))==NULL) { return -1; }
// Fill the FileHeade)
FileHeader.bfType= ((WORD) ('M' << 8) | 'B');
FileHeader.bfOffBits=sizeof(BITMAPFILEHEADER)+sizeof(BmpHeader)+256*4L;
FileHeader.bfSize=FileHeader.bfOffBits+width*height ;
FileHeader.bfReserved1=0;
FileHeader.bfReserved2=0;
if (fwrite((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=-1;
// Fill the ImgHeader
BmpHeader.biSize = 40;
BmpHeader.biWidth = width;
BmpHeader.biHeight = height;
BmpHeader.biPlanes = 1 ;
BmpHeader.biBitCount = 8 ;
BmpHeader.biCompression = 0 ;
BmpHeader.biSizeImage = 0 ;
BmpHeader.biXPelsPerMeter = 0;
BmpHeader.biYPelsPerMeter = 0;
BmpHeader.biClrUsed = 0;
BmpHeader.biClrImportant = 0;
if (fwrite((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=-1;
// write Pallete
for (i=0,p[3]=0;i<256;i++)
{
p[3]=0;
p[0]=p[1]=p[2]=i; // blue,green,red;
if (fwrite((void *)p,1,4,BinFile)!=4) { Suc=-1; break; }
}
// write image data
if (fwrite((void *)img,1,width*height,BinFile)!=(unsigned int) width*height) Suc=-1;
// return;
fclose(BinFile);
return Suc;
} //////////////////////////
// Read a 24 bit bmp File
//////////////////////////
BYTE *Read24BitBmpFile2Img(const char * filename,int *width,int *height)
{
FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
BYTE *img;
int size;
int Suc=1; // Open File
*width=*height=0;
if((BinFile=fopen(filename,"rb"))==NULL) return NULL;
// Read Struct Info
if (fread((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=-1;
if (fread((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=-1;
if (Suc==-1) { fclose(BinFile); return NULL; }
// Read Image Data
*width=(BmpHeader.biWidth+3)/4*4;
*height=BmpHeader.biHeight;
size=(*width)*(*height)*3;
fseek(BinFile,FileHeader.bfOffBits,SEEK_SET);
if ( (img=new BYTE[size+8])!=NULL)
{
//size_mem = *((int *)img - 1);
if(fread(img+8-int(img)%8,sizeof(BYTE),size,BinFile)!=(unsigned int)size)
{
fclose(BinFile);
delete img;
img=NULL;
return NULL;
}
}
fclose(BinFile);
return img;
}
//////////////////////////
// write a 24 bit bmp File
//////////////////////////
bool Write24BitImg2BmpFile(BYTE *img,int width,int height,const char * filename)
{
FILE * BinFile;
BITMAPFILEHEADER FileHeader;
BITMAPINFOHEADER BmpHeader;
bool Suc=true;
int y,i,extend;
BYTE *pCur; // Open File
if((BinFile=fopen(filename,"w+b"))==NULL) { return false; }
// Fill the FileHeader
FileHeader.bfType= ((WORD) ('M' << 8) | 'B');
FileHeader.bfOffBits=sizeof(BITMAPFILEHEADER)+sizeof(BmpHeader);
FileHeader.bfSize=FileHeader.bfOffBits+width*height*3L ;
FileHeader.bfReserved1=0;
FileHeader.bfReserved2=0;
if (fwrite((void *)&FileHeader,1,sizeof(FileHeader),BinFile)!=sizeof(FileHeader)) Suc=false;
// Fill the ImgHeader
BmpHeader.biSize = 40;
BmpHeader.biWidth = width;
BmpHeader.biHeight = height;
BmpHeader.biPlanes = 1 ;
BmpHeader.biBitCount = 24 ;
BmpHeader.biCompression = 0 ;
BmpHeader.biSizeImage = 0 ;
BmpHeader.biXPelsPerMeter = 0;
BmpHeader.biYPelsPerMeter = 0;
BmpHeader.biClrUsed = 0;
BmpHeader.biClrImportant = 0;
if (fwrite((void *)&BmpHeader,1,sizeof(BmpHeader),BinFile)!=sizeof(BmpHeader)) Suc=false;
// write image data
extend=(width+3)/4*4-width;
if (extend==0)
{
if (fwrite((void *)img,1,width*height*3,BinFile)!=(unsigned int)3*width*height) Suc=false;
}
else
{
for(y=0,pCur=img;y<height;y++,pCur+=3*width)
{
if (fwrite((void *)pCur,1,width*3,BinFile)!=(unsigned int)3*width) Suc=false; // 真实的数据
for(i=0;i<extend;i++) // 扩充的数据
{
if (fwrite((void *)(pCur+3*(width-1)+0),1,1,BinFile)!=1) Suc=false;
if (fwrite((void *)(pCur+3*(width-1)+1),1,1,BinFile)!=1) Suc=false;
if (fwrite((void *)(pCur+3*(width-1)+2),1,1,BinFile)!=1) Suc=false;
}
}
}
// return;
fclose(BinFile);
return Suc;
} //////////////////////////
// Logarithm Transform
// OrgImg: point to original image
// widht: the width of the image
// height:the height of the image
// LogImg: point to logarithm transform of the image
//////////////////////////
void LogarithmTransform(int *OrgImg,int width,int height,int *LogImg)
{
int *pLog=LogImg,*pCur=OrgImg;
int i,size,temp;
size=width*height;
for(i=0;i<size;i++)
{
temp=*pCur++;
if(temp==0) *pLog++=0;
else *pLog++=log(float(temp))*2048;
}
return;
}
////////////////////////////////
// 计算窗口内像素灰度和
////////////////////////////////
void Ini(BYTE *pOrgImg,int width,int height,int *sum)
{
int i,j;
BYTE *pCur;
pCur=pOrgImg;
*sum=*pCur;
for(i=1;i<height;i++)
*(sum+i*width)=*(sum+(i-1)*width)+*(pCur+i*width);
for(j=1;j<width;j++)
*(sum+j)=*(sum+j-1)+*(pCur+j);
for(i=1;i<height;i++)
{
for(j=1;j<width;j++)
{
*(sum+i*width+j)=*(sum+(i-1)*width+j)+*(sum+i*width+j-1)-*(sum+(i-1)*width+j-1)+*(pCur+i*width+j); //卷积计算
}
}
return;
} //////////////////////////
// 局部非线性对比度增强
//////////////////////////
void LocalNonlinearStretch(BYTE *OrgImg,int width,int height,int *ResData)
{
int i,j,k,s,size=width*height;
int *pData,*sum,sum1;
double avg,min,max,nor;
BYTE *pCur=OrgImg;
sum=new int[width*height];
pData=ResData+width+1;
// Ini(OrgImg,width,height,sum);
for(i=0;i<height-2;i++,pCur+=2,pData+=2)
{
min=*pCur;
max=*pCur;
for(k=0;k<3;k++)
{
for(s=0;s<3;s++)
{
if(*(pCur+k*width+s)<min) min=*(pCur+k*width+s);
else if(*(pCur+k*width+s)>max) max=*(pCur+k*width+s);
}
}
sum1=(*pCur+*(pCur+1)+*(pCur+2)+*(pCur+width)+*(pCur+width+1)+*(pCur+width+2)+*(pCur+width*2)+*(pCur+width*2+1)+*(pCur+width*2+2));
avg=(sum1-*(pCur+width+1))/8.0;
nor=(*(pCur+width+1)-min+1)/double(max-min+1);
*pData=(*(pCur+width+1)+(*(pCur+width+1)-avg)*pow((nor+EPSILON),DELTA)+0.5)*2048;
pCur++;
pData++;
for(j=1;j<width-2;j++,pCur++,pData++)
{
min=*pCur;
max=*pCur;
for(k=0;k<3;k++)
{
for(s=0;s<3;s++)
{
if(*(pCur+k*width+s)<min) min=*(pCur+k*width+s);
else if(*(pCur+k*width+s)>max) max=*(pCur+k*width+s);
}
sum1=sum1-*(pCur+k*width-1)+*(pCur+k*width+2);
}
// avg=((*(sum+(i+3)*width+j+3)-*(sum+i*width+j+3)-*(sum+(i+3)*width+j)+*(sum+i*width+j))-*(pCur+width+1))/8.0;
// avg=(*pCur+*(pCur+1)+*(pCur+2)+*(pCur+width)+*(pCur+width+2)+*(pCur+width*2)+*(pCur+width*2+1)+*(pCur+width*2+2))/8.0; // s/8.0*256
avg=(sum1-*(pCur+width+1))/8.0;
nor=(*(pCur+width+1)-min+1)/double(max-min+1);
*pData=(*(pCur+width+1)+(*(pCur+width+1)-avg)*pow((nor+EPSILON),DELTA)+0.5)*2048;
}
}
delete sum;
return;
}
//////////////////////////
// Gaussian Template
//////////////////////////
void GaussianTemplate(int *Template,int Tsize,double c)
{
int *pCur;
double Lemda,c1=c*c;
int i,j;
Lemda=0;
for(pCur=Template,i=-((Tsize-1)>>1);i<=((Tsize-1)>>1);i++)
{
for(j=-((Tsize-1)>>1);j<=((Tsize-1)>>1);j++,pCur++)
{
*pCur=(exp(-(i*i+j*j)/c1))*2048;
Lemda+=*pCur;
}
}
Lemda=2048.0/Lemda;
for(pCur=Template,i=0;i<Tsize*Tsize;i++,pCur++)
{
*pCur=Lemda*(*pCur);
} return;
} //////////////////////////
// 3*3 Gaussian Template
//////////////////////////
void GaussianTemplate2(int *Template,double c)
{
int *pCur;
double Lemda,c1=c*c;
int i,j;
Lemda=1.0/sqrt(c*c*PI)*0.7*2048;
for(pCur=Template,i=-1;i<=1;i++)
{
for(j=-1;j<=1;j++)
{
*pCur++=Lemda*exp(-(i*i+j*j)/c1);
} }
return;
} //////////////////////////
// 单尺度Retinex
// OrgImg: point to original image
// widht: the width of the image
// height: the height of the image
// ResImg: point to the result image
//////////////////////////
void SSR(int *LogImg,BYTE *OrgImg,int width,int height,int *ResData,int *Template,int Tsize)
{
BYTE *pCur=OrgImg;
int i,j,k,s,size=width*height;
int temp,*pData,*pCtr,*ptmp,*pRes,temp2;
double r=1.0/GAMMA;
memset(ResData,0,sizeof(int)*width*height);
pRes=ResData+((Tsize-1)/2)*width+((Tsize-1)/2);
pCtr=LogImg+((Tsize-1)/2)*width+((Tsize-1)/2);
ptmp=Template;
for(i=(Tsize-1)/2;i<height-((Tsize-1)/2);i++,pRes+=Tsize-1,pCtr+=Tsize-1,pCur+=Tsize-1)
{
for(j=(Tsize-1)/2;j<width-((Tsize-1)/2);j++,pRes++,pCtr++,pCur++)
{
temp=0;
ptmp=Template;
for(k=0;k<Tsize;k++)
{
for(s=0;s<Tsize;s++)
{
temp+=(*(pCur+k*width+s)*(*ptmp++));
}
}
if(temp==0) *pRes=exp(pow(*pCtr>>11,r));
else
{
temp2=(*pCtr)-(log(float(temp>>22)))*2048;
if(temp2>0) *pRes=(exp(pow((temp2>>11),r)))*2048+(temp>>11);
else if(temp2<0) *pRes=exp(0-pow(0-(temp2>>11),r))*2048+(temp>>11);
else *pRes=(temp>>11);
}
}
}
//四边不处理
for(i=0,pRes=ResData,pCur=OrgImg;i<width*(Tsize-1)/2;i++,pCur++,pRes++)
{
*pRes=*pCur;
}
for(i=(Tsize-1)/2;i<height-(Tsize-1)/2;i++)
{
for(j=0;j<(Tsize-1)/2;j++)
{
*pRes++=*pCur++;
}
pRes+=width-(Tsize-1);
pCur+=width-(Tsize-1);
for(j=0;j<(Tsize-1)/2;j++)
{
*pRes++=*pCur++;
}
}
for(i=0;i<width*(Tsize-1)/2;i++)
{
*pRes++=*pCur++;
}
return;
}
/////////////////////////
// Get Mean And Deviance
/////////////////////////
void GetMeanAndDeviance(int *Temp,int width,int height,int Tsize,int *mean,int *dev)
{
int i,j,size;
size=(width-(Tsize-1))*(height-(Tsize-1));
int *t;
long double sum;
for(t=Temp+(Tsize-1)/2*width+(Tsize-1)/2,sum=0,i=(Tsize-1)/2;i<(height-(Tsize-1)/2);i++,t+=Tsize-1)
{
for(j=(Tsize-1)/2;j<width-(Tsize-1)/2;j++)
{
sum+=*t++;
}
}
*mean=sum/size;
for(t=Temp+(Tsize-1)/2*width+(Tsize-1)/2,sum=0,i=(Tsize-1)/2;i<height-(Tsize-1)/2;i++,t+=Tsize-1)
{
for(j=(Tsize-1)/2;j<width-(Tsize-1)/2;j++)
{
sum+=pow(float(*t-*mean),2);
}
}
*dev=sqrt(sum/size);
return;
} /////////////////////////
// Linear Stretch
// Temp: point to the image before stratching
// widht: the width of the image
// height: the height of the image
// ResImg: point to the resultant image
/////////////////////////
void LinearStretch(int *Temp,int width,int height,int *mean,int *dev,BYTE *ResImg)
{
BYTE *pRes;
int *t,min,max,temp,c;
int i,size=width*height;
min=*mean-3*(*dev);
max=*mean+3*(*dev);
c=255.0/(max-min)*2048;
for(pRes=ResImg,t=Temp,i=0;i<size;i++,t++,pRes++)
{
temp=((*t-min)*c)>>11;
if(temp>255) *pRes=255;
else if(temp<0) *pRes=0;
else *pRes=temp;
} return;
} /*
//////////////////////////
// GAMMA Correction
//////////////////////////
void GammaCorrection(double *OrgData,int width,int heihgt,double *ResData)
{
int i,size;
double *pOrg,*pRes;
for(i=0,pOrg=OrgDat,pRes=ResData;i<size;i++)
{
*pRes++=pow(*pOrg++,1.0/GAMMA);
}
}
*/
//////////////////////////
// Contrast
//////////////////////////
void Contrast(BYTE *OrgImg,int x,int y,int width,int height,int blockw,int blockh,double &wcontrast,double &mcontrast)
{
BYTE *pCur=OrgImg+x*blockw+y*width*blockh;
double min=10000,max=-1;
int i,j; for(i=0;i<blockh;i++,pCur=pCur+width-blockw)
{
for(j=0;j<blockw;j++,pCur++)
{
if(*pCur<min) min=*pCur;
if(*pCur>max) max=*pCur;
}
}
mcontrast=(max-min+1)/(max+min+1);
if(min==0) wcontrast=(max+5)/(min+5);
else wcontrast=max/min; return;
} //////////////////////////
// Measure of Performance
//////////////////////////
void Measure(BYTE *ResImg,int width,int height,double &emee,double &ame)
{
int k1=8,k2=8,i,j,blockw,blockh;
double wcontrast,mcontrast;
blockw=width/k2;
blockh=height/k1;
emee=0;
ame=0;
for(i=0;i<k1;i++)
{
for(j=0;j<k2;j++)
{
Contrast(ResImg,i,j,width,height,blockw,blockh,wcontrast,mcontrast);
emee+=pow(wcontrast,ALPHA_c)*log(wcontrast);
ame+=pow(mcontrast,ALPHA_c)*log(mcontrast);
}
}
emee=ALPHA_c*emee/(k1*k2);
ame=ALPHA_c*ame/(k1*k2);
return ;
} /////////////////////////
// Gray Image Process
/////////////////////////
void GrayImageProcess(BYTE *OrgImg,int width,int height,BYTE *ResImg)
{
int *Data,*LogImg,*Template,mean,dev;
int Tsize;
double c;
Tsize=5;
c=20;
Template=new int[Tsize*Tsize];
Data=new int[width*height];
LogImg=new int[width*height];
LocalNonlinearStretch(OrgImg,width,height,Data);
LogarithmTransform(Data,width,height,LogImg);
//GaussianTemplate(Template,Tsize,c);
GaussianTemplate2(Template,0.5);Tsize=3;
SSR(LogImg,OrgImg,width,height,Data,Template,Tsize);
GetMeanAndDeviance(Data,width,height,Tsize,&mean,&dev);
LinearStretch(Data,width,height,&mean,&dev,ResImg);
delete Template;
delete Data;
delete LogImg;
return;
} /////////////////////////
// Color Image Process
/////////////////////////
void ColorImageProcess(BYTE *OrgImg,int width,int height,BYTE *ResImg)
{
BYTE *Value;
int i,j,Tsize,temp;
int *Data,*LogImg,*Template,*Percent,mean,dev;
double c,emee,ame;
Tsize=5;
c=0.75;
Template=new int[Tsize*Tsize];
Data=new int[width*height];
LogImg=new int[width*height];
Percent=new int[width*height*3];
Value=new BYTE[width*height];
memset(Value,0,sizeof(BYTE)*width*height);
for(j=0;j<width*height;j++)
{
temp=0;
for(i=0;i<3;i++)
{
temp+=*(OrgImg+j*3+i);
}
for(i=0;i<3;i++)
{
*(Percent+j*3+i)=*(OrgImg+j*3+i)/double(temp)*2048;
*(Value+j)+=(*(OrgImg+j*3+i)*(*(Percent+j*3+i)))>>11;
}
}
LocalNonlinearStretch(Value,width,height,Data);
LogarithmTransform(Data,width,height,LogImg);
// GaussianTemplate(Template,Tsize,c);
GaussianTemplate2(Template,0.5);Tsize=3;
SSR(LogImg,Value,width,height,Data,Template,Tsize);
GetMeanAndDeviance(Data,width,height,Tsize,&mean,&dev);
LinearStretch(Data,width,height,&mean,&dev,Value);
for(j=0;j<width*height;j++)
{
for(i=0;i<3;i++)
{
temp=(*(Percent+j*3+i)*(*(Value+j))*3)>>11;
if(temp>255) *(ResImg+j*3+i)=255;
else *(ResImg+j*3+i)=temp;
}
}
printf("*****彩色图像三通道联合处理结果******************\n");
Measure(Value,width,height,emee,ame);
cout<<"EMEE:"<<emee<<endl;
delete Template;
delete Data;
delete LogImg;
delete Value;
delete Percent;
return;
} //////////////////////////
// Color Image process 2
// 三通道分别处理
//////////////////////////
void ColorImageProcess2(BYTE *OrgImg,int width,int height,BYTE *ResImg)
{
BYTE *Value;
int i,j,Tsize;
int *Data,*LogImg,*Template,mean,dev;
double c,emee=0,ame=0,x1,x2;
Tsize=5;
c=0.5;
Template=new int[Tsize*Tsize];
Value=new BYTE[width*height];
Data=new int[width*height];
LogImg=new int[width*height];
GaussianTemplate(Template,Tsize,c);
// GaussianTemplate2(Template,0.5); Tsize=3;
for(i=0;i<3;i++)
{
for(j=0;j<width*height;j++)
{
*(Value+j)=*(OrgImg+j*3+i);
}
LocalNonlinearStretch(Value,width,height,Data);
LogarithmTransform(Data,width,height,LogImg);
SSR(LogImg,Value,width,height,Data,Template,Tsize);
GetMeanAndDeviance(Data,width,height,Tsize,&mean,&dev);
LinearStretch(Data,width,height,&mean,&dev,Value);
Measure(Value,width,height,x1,x2);
emee+=x1;
ame+=x2;
for(j=0;j<width*height;j++)
{
*(ResImg+j*3+i)=*(Value+j);
}
}
printf("*****彩色图像三通道分别处理结果******************\n");
cout<<"EMEE:"<<emee/3.0<<endl;
delete Template;
delete Value;
delete Data;
delete LogImg;
return;
}
// Retinex.cpp : Defines the entry point for the console application.
// #include "stdafx.h" #include "Retinex.h"
//////////////////////////
// main
//////////////////////////
int main()
{
BYTE *OrgImg,*ResImg,*p1,*p2;
int width,height,i,j,suc,area1,area2,Tsize;
bool isRGB,ret;
clock_t t1,t2;
double emee,ame;
char ch;
int *offsetdata=new int[2];
for(i=0;i<2;i++)
{
*(offsetdata+i)=0X80808080;
}
system( "cls" );
printf("******中心/环绕Retienx算法******************\n");
printf(" 1.处理灰度图像\n");
printf(" 2.处理彩色图像\n");
printf("*********************************************\n");
printf("请选择(1或2): ");
do
{
cin>>ch;
}while( ch != '1' && ch != '2'); //system ( "cls" ); if ( ch == '1')
isRGB=false;
else if ( ch == '2')
isRGB=true;
// open file string image_name;
cout<<endl<<"输入图像名:";
cin>>image_name; Mat image_dst; if (!isRGB)
{
image_dst = imread(image_name,0);
}
else
{
image_dst = imread(image_name,1);
} if(image_dst.empty())
{
return -1;
} //是否加载成功 imshow(image_name,image_dst); width = image_dst.cols;
height = image_dst.rows;
int channel = image_dst.channels();
int step = width * channel* 1;
uchar* ps = NULL; p1 = new BYTE[width*height*channel+8]; for (int i = 0; i < height; i++)
{
ps = image_dst.ptr<uchar>(i);
int bmp_i = height -1 -i;//图片上下倒置
for (int j = 0; j <width; j++)
{
if (1 == channel)
{
*(p1 + i*step + j) = ps[j]; }
else if (3 == channel)
{ //opencv的顺序是bgr,bmp本来是grb?
*(p1 + bmp_i*step + j*3) = ps[j*3]; //b
*(p1 + bmp_i*step + j*3 + 1) = ps[j*3 + 1]; //g
*(p1 + bmp_i*step + j*3 + 2) = ps[j*3 + 2]; //r
}
}
} BYTE* px; if(!isRGB)
px = Read8BitBmpFile2Img(image_name.c_str(),&width,&height);
else
px = Read24BitBmpFile2Img(image_name.c_str(),&width,&height); int len = width*height*channel;
int huanhang = width *channel; FILE *pFile1 = fopen("out_opencv.txt", "w"); // 文件打开方式 如果原来有内容也会销毁
FILE *pFile2 = fopen("out_ori.txt", "w"); // 文件打开方式 如果原来有内容也会销毁 for (int i = 1;i <=len;i++)
{
fprintf(pFile1,"%d\t",(int)*(p1+i));
if (i % (huanhang)==0)
{
fprintf(pFile1,"\n"); } }
cout<<"下面是正常的"<<endl; for (int i = 1;i <=len;i++)
{
fprintf(pFile2,"%d\t",(int)*(px+i)); if (i % huanhang==0)
{
fprintf(pFile2,"\n");
} } fclose(pFile1);
fclose(pFile2);
fflush(pFile1);
fflush(pFile2); if (p1==NULL)
{
printf("*fopen err!\n");
delete p1;
return 0;
}
if(width%64!=0||height%64!=0)
{
cout<<"图像大小需是64的倍数"<<endl;
delete p1;
return 0;
} area1=width*height; if(!isRGB)
{
OrgImg=p1+8-int(p1)%8;
p2=new BYTE[width*height+8];
ResImg=p2+8-int(p2)%8;
t2=clock();
GrayImageProcess(OrgImg,width,height,ResImg);
t1=clock();
printf("*****灰度图像处理结果******************\n");
cout<<"运行时间:"<<t1-t2<<"ms"<<endl;
Measure(ResImg,width,height,emee,ame);
cout<<"EMEE:"<<emee<<endl;
suc=Write8BitImg2BmpFile(ResImg,width,height,"result_1.bmp");
}
else
{
OrgImg=p1;//+8-int(p1)%8;
p2=new BYTE[width*height*3+8];
ResImg=p2;//+8-int(p2)%8;
t2=clock();
ColorImageProcess(OrgImg,width,height,ResImg);
t1=clock();
cout<<"运行时间:"<<t1-t2<<"ms"<<endl;
t2=clock();
suc=Write24BitImg2BmpFile(ResImg,width,height,"result_1.bmp");
ColorImageProcess2(OrgImg,width,height,ResImg);
t1=clock();
cout<<"运行时间:"<<t1-t2<<"ms"<<endl;
suc=Write24BitImg2BmpFile(ResImg,width,height,"result_2.bmp");
}
if(suc==-1)
{
printf("*fwrite err!\n");
} Mat result1 = imread("result_1.bmp",1);
Mat result2 = imread("result_2.bmp",1); imshow("result1",result1);
imshow("result2",result2);
//release mem
delete p1;
delete p2; waitKey(0);
return 0;
}
Retinex图像增强算法代码的更多相关文章
- Retinex图像增强算法
前一段时间研究了一下图像增强算法,发现Retinex理论在彩色图像增强.图像去雾.彩色图像恢复方面拥有很好的效果,下面介绍一下我对该算法的理解. Retinex理论 Retinex理论始于Land和M ...
- 关于Retinex图像增强算法的一些新学习。
最近再次看了一下IPOL网站,有一篇最近发表的文章,名字就是Multiscale Retinex,感觉自己对这个已经基本了解了,但还是进去看了看,也有一些收获,于是抽空把他们稍微整理了下,原始文章及其 ...
- retinex图像增强算法的研究
图像增强方面我共研究了Retinex.暗通道去雾.ACE等算法.其实,它们都是共通的.甚至可以说,Retinex和暗通道去雾就是同一个算法的两个不同视角,而ACE算法又是将Retinex和灰度世界等白 ...
- 图像处理之增强---图像增强算法四种,图示与源码,包括retinex(ssr、msr、msrcr)和一种混合算法
申明:本文非笔者原创,原文转载自:http://blog.csdn.net/onezeros/article/details/6342661 两组图像:左边较暗,右边较亮 第一行是原图像,他们下面是用 ...
- 图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)
一.图像增强算法原理 图像增强算法常见于对图像的亮度.对比度.饱和度.色调等进行调节,增加其清晰度,减少噪点等.图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则 ...
- LaTeX 算法代码排版 --latex2e范例总结
LaTeX 写作: 算法代码排版 --latex2e范例总结 latex2e 宏包的使用范例: \usepackage[ruled]{algorithm2e} ...
- KMP算法代码
以下是本人根据上一篇博客随笔http://www.cnblogs.com/jiayouwyhit/p/3251832.html,所写的KMP算法代码(暂未优化),个人认为在基于上一篇博客的基础上,代码 ...
- 算法代码[置顶] 机器学习实战之KNN算法详解
改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技 ...
- 经常使用MD5算法代码
经常使用的MD5算法代码日期: 2014年8月4日作者: 铁锚 MD5,全称为 Message Digest Algorithm 5(消息摘要算法第五版).详情请參考 维基百科:MD5 MD5加密后 ...
随机推荐
- Android 学习笔记一 自定义按钮背景图
入门学到的一些组件都是比较规矩的,但在实际应用中,我们需要更多特色的组件,例如一个简单的Button,所以我们必须要自定义它的属性. 遇到的问题:用两张图片来代替按钮,分别表示点击前后 解决方法:用I ...
- 安卓高级1 -----Xutil3 和Picasso使用
Xutils3 Xutils由于内部使用httpclient然而在安卓5.0谷歌发现httpclient出现不稳定的情况.于6.0完全弃用,所以作者升级到Xutils3替换原本网络模块 配置环境(St ...
- Connection Reset By Peer 解析
linux网络编程 Connection reset by peer错误服务器向客户端发送了数据,客户端没有接收就关闭了,服务器read就会发生Connection reset by peer错误.我 ...
- CDH集群安装&测试总结
0.绪论 之前完全没有接触过大数据相关的东西,都是书上啊,媒体上各种吹嘘啊,我对大数据,集群啊,分布式计算等等概念真是高山仰止,充满了仰望之情,觉得这些东西是这样的: 当我搭建的过程中,发现这些东西是 ...
- shiro架构
1 shiro介绍 1.1 什么是shiro 分享牛系列,分享牛专栏,分享牛.shiro是apache旗下一个开源框架,它将软件系统的安全认证相关的功能抽取出来,实现用户身份认证,权限授权.加密.会 ...
- Swift基础之两种选择星星的评价样式并获取星星的索引值
想练练手,所以封装了一个两种选择星星的评价样式的Demo,并且可以获取到点击的星星的索引值,方便记录值,上传数据时使用 首先创建View类,设计初始化方法,并且用到了枚举类型和代理方法 方式一:默认的 ...
- 理解性能的奥秘——应用程序中慢,SSMS中快(4)——收集解决参数嗅探问题的信息
本文属于<理解性能的奥秘--应用程序中慢,SSMS中快>系列 接上文:理解性能的奥秘--应用程序中慢,SSMS中快(3)--不总是参数嗅探的错 前面已经提到过关于存储过程在SSMS中运行很 ...
- Android Studio下多渠道打包
Android Studio下实现多渠道打包 直接上步骤 步骤 1. 清单文件添加属性(以友盟统计为例) 在application标签下添加meta-data属性 <application -- ...
- Android Multimedia框架总结(七)C++中MediaPlayer的C/S架构补充及MediaService介绍
转载请把头部出处链接和尾部二维码一起转载,本文出自逆流的鱼,文章链接: http://blog.csdn.net/hejjunlin/article/details/52465168 前面一篇主要介绍 ...
- BeanUtils Exception 之 FastHashMap
这里仅仅是为了记录一件十分奇怪的事情,在使用BeanUtils的过程中,所有的依赖包都添加了, common logging common collections ··· 在为boolean 这种基本 ...