跟着书中代码往下写在这里卡住了,考虑到可能还会有其他同学也遇到了这样的问题,记下来分享。

先吐槽一下,相信大部分网友在这里卡住的主要原因是伟大的GFW,所以无论是软件翻墙还是肉身翻墙的小伙伴们估计是无论如何也看不到这篇博文的,不想往下看的请自觉使用翻墙技能。

怎么安装feedparser?

按书中提供的网址直接安装feedparser会提示错误说没有setuptools,然后去找setuptools,官方的说法是windows最好用ez_setup.py安装,我确实下载不下来官网的那个ez_etup.py,这个帖子给出了解决方案:http://adesquared.wordpress.com/2013/07/07/setting-up-python-and-easy_install-on-windows-7/

ez_setup.py

将这个文件直接拷贝到C:\\python27文件夹中,输入命令行:python ez_setup.py install

然后转到放feedparser安装文件的文件夹中,命令行输入:python setup.py install

作者提供的RSS源链接“http://newyork.craigslist.org/stp/index.rss”不可访问怎么办?

书中作者的意思是以来自源 http://newyork.craigslist.org/stp/index.rss 中的文章作为分类为1的文章,以来自源 http://sfbay.craigslist.org/stp/index.rss 中的文章作为分类为0的文章

为了能够跑通示例代码,可以找两可用的RSS源作为替代。

我用的是这两个源:

NASA Image of the Day:http://www.nasa.gov/rss/dyn/image_of_the_day.rss

Yahoo Sports - NBA - Houston Rockets News:http://sports.yahoo.com/nba/teams/hou/rss.xml

也就是说,如果算法运行正确的话,所有来自于 nasa 的文章将会被分类为1,所有来自于yahoo sports的休斯顿火箭队新闻将会分类为0

使用自己定义的RSS源,当程序运行到trainNB0(array(trainMat),array(trainClasses))时会报错,怎么办?

从书中作者的例子来看,作者使用的源中文章数量较多,len(ny['entries']) 为 100,我找的几个 RSS 源只有10-20个左右。

>>> import feedparser
>>>ny=feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
>>> ny['entries']
>>> len(ny['entries'])
100

因为作者的一个RSS源有100篇文章,所以他可以在代码中剔除了30个“停用词”,随机选择20篇文章作为测试集,但是当我们使用替代RSS源时我们只有10篇文章却要取出20篇文章作为测试集,这样显然是会出错的。只要自己调整下测试集的数量就可以让代码跑通;如果文章中的词太少,减少剔除的“停用词”数量可以提高算法的准确度。

如果不想将出现频率排序最高的30个单词移除,该如何去掉“停用词”?

可以把要去掉的停用词存放到txt文件中,使用时读取(替代移除高频词的代码)。具体需要停用哪些词可以参考这里 http://www.ranks.nl/stopwords

以下代码想正常运行需要将停用词保存至stopword.txt中。

我的txt中保存了以下单词,效果还不错:

a
about
above
after
again
against
all
am
an
and
any
are
aren't
as
at
be
because
been
before
being
below
between
both
but
by
can't
cannot
could
couldn't
did
didn't
do
does
doesn't
doing
don't
down
during
each
few
for
from
further
had
hadn't
has
hasn't
have
haven't
having
he
he'd
he'll
he's
her
here
here's
hers
herself
him
himself
his
how
how's
i
i'd
i'll
i'm
i've
if
in
into
is
isn't
it
it's
its
itself
let's
me
more
most
mustn't
my
myself
no
nor
not
of
off
on
once
only
or
other
ought
our
ours
ourselves
out
over
own
same
shan't
she
she'd
she'll
she's
should
shouldn't
so
some
such
than
that
that's
the
their
theirs
them
themselves
then
there
there's
these
they
they'd
they'll
they're
they've
this
those
through
to
too
under
until
up
very
was
wasn't
we
we'd
we'll
we're
we've
were
weren't
what
what's
when
when's
where
where's
which
while
who
who's
whom
why
why's
with
won't
would
wouldn't
you
you'd
you'll
you're
you've
your
yours
yourself
yourselves

'''
Created on Oct 19, 2010 @author: Peter
'''
from numpy import * def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help','my','dog', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet) def bagOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
else: print "the word: %s is not in my Vocabulary!" % word
return returnVec def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0 def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec def testingNB():
print '*** load dataset for training ***'
listOPosts,listClasses = loadDataSet()
print 'listOPost:\n',listOPosts
print 'listClasses:\n',listClasses
print '\n*** create Vocab List ***'
myVocabList = createVocabList(listOPosts)
print 'myVocabList:\n',myVocabList
print '\n*** Vocab show in post Vector Matrix ***'
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(bagOfWords2Vec(myVocabList, postinDoc))
print 'train matrix:',trainMat
print '\n*** train P0V p1V pAb ***'
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
print 'p0V:\n',p0V
print 'p1V:\n',p1V
print 'pAb:\n',pAb
print '\n*** classify ***'
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(bagOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
testEntry = ['stupid', 'garbage']
thisDoc = array(bagOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb) def textParse(bigString): #input is big string, #output is word list
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2] def spamTest():
docList=[]; classList = []; fullText =[]
for i in range(1,26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
trainingSet = range(50); testSet=[] #create test set
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print "classification error",docList[docIndex]
print 'the error rate is: ',float(errorCount)/len(testSet)
#return vocabList,fullText def calcMostFreq(vocabList,fullText):
import operator
freqDict = {}
for token in vocabList:
freqDict[token]=fullText.count(token)
sortedFreq = sorted(freqDict.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedFreq[:30] def stopWords():
import re
wordList = open('stopword.txt').read() # see http://www.ranks.nl/stopwords
listOfTokens = re.split(r'\W*', wordList)
return [tok.lower() for tok in listOfTokens]
print 'read stop word from \'stopword.txt\':',listOfTokens
return listOfTokens def localWords(feed1,feed0):
import feedparser
docList=[]; classList = []; fullText =[]
print 'feed1 entries length: ', len(feed1['entries']), '\nfeed0 entries length: ', len(feed0['entries'])
minLen = min(len(feed1['entries']),len(feed0['entries']))
print '\nmin Length: ', minLen
for i in range(minLen):
wordList = textParse(feed1['entries'][i]['summary'])
print '\nfeed1\'s entries[',i,']\'s summary - ','parse text:\n',wordList
docList.append(wordList)
fullText.extend(wordList)
classList.append(1) #NY is class 1
wordList = textParse(feed0['entries'][i]['summary'])
print '\nfeed0\'s entries[',i,']\'s summary - ','parse text:\n',wordList
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
print '\nVocabList is ',vocabList
print '\nRemove Stop Word:'
stopWordList = stopWords()
for stopWord in stopWordList:
if stopWord in vocabList:
vocabList.remove(stopWord)
print 'Removed: ',stopWord
## top30Words = calcMostFreq(vocabList,fullText) #remove top 30 words
## print '\nTop 30 words: ', top30Words
## for pairW in top30Words:
## if pairW[0] in vocabList:
## vocabList.remove(pairW[0])
## print '\nRemoved: ',pairW[0]
trainingSet = range(2*minLen); testSet=[] #create test set
print '\n\nBegin to create a test set: \ntrainingSet:',trainingSet,'\ntestSet',testSet
for i in range(5):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
print 'random select 5 sets as the testSet:\ntrainingSet:',trainingSet,'\ntestSet',testSet
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
print '\ntrainMat length:',len(trainMat)
print '\ntrainClasses',trainClasses
print '\n\ntrainNB0:'
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
#print '\np0V:',p0V,'\np1V',p1V,'\npSpam',pSpam
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
classifiedClass = classifyNB(array(wordVector),p0V,p1V,pSpam)
originalClass = classList[docIndex]
result = classifiedClass != originalClass
if result:
errorCount += 1
print '\n',docList[docIndex],'\nis classified as: ',classifiedClass,', while the original class is: ',originalClass,'. --',not result
print '\nthe error rate is: ',float(errorCount)/len(testSet)
return vocabList,p0V,p1V def testRSS():
import feedparser
ny=feedparser.parse('http://www.nasa.gov/rss/dyn/image_of_the_day.rss')
sf=feedparser.parse('http://sports.yahoo.com/nba/teams/hou/rss.xml')
vocabList,pSF,pNY = localWords(ny,sf) def testTopWords():
import feedparser
ny=feedparser.parse('http://www.nasa.gov/rss/dyn/image_of_the_day.rss')
sf=feedparser.parse('http://sports.yahoo.com/nba/teams/hou/rss.xml')
getTopWords(ny,sf) def getTopWords(ny,sf):
import operator
vocabList,p0V,p1V=localWords(ny,sf)
topNY=[]; topSF=[]
for i in range(len(p0V)):
if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
print "SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**"
for item in sortedSF:
print item[0]
sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
print "NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**"
for item in sortedNY:
print item[0] def test42():
print '\n*** Load DataSet ***'
listOPosts,listClasses = loadDataSet()
print 'List of posts:\n', listOPosts
print 'List of Classes:\n', listClasses print '\n*** Create Vocab List ***'
myVocabList = createVocabList(listOPosts)
print 'Vocab List from posts:\n', myVocabList print '\n*** Vocab show in post Vector Matrix ***'
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(bagOfWords2Vec(myVocabList,postinDoc))
print 'Train Matrix:\n', trainMat print '\n*** Train ***'
p0V,p1V,pAb = trainNB0(trainMat,listClasses)
print 'p0V:\n',p0V
print 'p1V:\n',p1V
print 'pAb:\n',pAb

《机器学习实战》中贝叶斯分类中导入RSS源例子的更多相关文章

  1. 《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现

    ============================================================================================ <机器学 ...

  2. python机器学习实战(三)

    python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html  前言 这篇notebook是关于机器 ...

  3. 机器学习实战 [Machine learning in action]

    内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属 ...

  4. 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)

    第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...

  5. 机器学习实战之k-近邻算法(3)---如何可视化数据

    关于可视化: <机器学习实战>书中的一个小错误,P22的datingTestSet.txt这个文件,根据网上的源代码,应该选择datingTestSet2.txt这个文件.主要的区别是最后 ...

  6. 【Python机器学习实战】决策树和集成学习(一)

    摘要:本部分对决策树几种算法的原理及算法过程进行简要介绍,然后编写程序实现决策树算法,再根据Python自带机器学习包实现决策树算法,最后从决策树引申至集成学习相关内容. 1.决策树 决策树作为一种常 ...

  7. 探秘Tomcat(一)——Myeclipse中导入Tomcat源码

    前言:有的时候自己不知道自己是井底之蛙,这并没有什么可怕的,因为你只要蜷缩在方寸之间的井里,无数次的生活轨迹无非最终归结还是一个圆形:但是可怕的是有一天你不得不从井里跳出来生活,需要重新审视井以外的生 ...

  8. 导入android源码中的APP源码到eclipse

    导入android源码中的APP源码到eclipse 一般最简单的办法就是创建新的android工程,选择create project from existing source选项,直接导入源码就OK ...

  9. 机器学习实战基础(十一):sklearn中的数据预处理和特征工程(四) 数据预处理 Preprocessing & Impute 之 处理分类特征:编码与哑变量

    处理分类特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的 ...

随机推荐

  1. Q859 亲密字符串

    给定两个由小写字母构成的字符串 A 和 B ,只要我们可以通过交换 A 中的两个字母得到与 B 相等的结果,就返回 true :否则返回 false . 示例 1: 输入: A = "ab& ...

  2. hdu-1022-栈

    Train Problem I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. Home Web Server 1.9.1 build 164 - CGI Remote Code Execution复现

    一.  Home Web Server 1.9.1 build 164 - CGI Remote Code Execution复现 漏洞描述: Home Web Server允许调用CGI程序来通过P ...

  4. 剑指offer——面试题15.1:判断一个数是否为2的整数次方

    #include"iostream" using namespace std; bool IsTwoPower(int n) { )&n); } int main() { ...

  5. (转)linux shell单引号、双引号及无引号区别

    原文:http://blog.csdn.net/woshizhangliang999/article/details/50132265 3.描述linux shell中单引号.双引号及不加引号的简单区 ...

  6. 九度oj题目1521:二叉树的镜像

    题目1521:二叉树的镜像 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2061 解决:560 题目描述: 输入一个二叉树,输出其镜像. 输入: 输入可能包含多个测试样例,输入以EOF ...

  7. 移动端或APP禁止放大标识

    如果手机端或者APP的应用里面,有点击一下屏幕会自己放大,解决办法如下: 在头部添加一条meta标识 <meta name="viewport" content=" ...

  8. 自己用 python 实现 base64 编码

    自己用 python 实现 base64 编码 base64 编码原理 二进制文件中包含有很多无法显示和打印的字符,二进制的数据一般以 ASCII 码形式(8 bit,即一个字节)存储,8 bit 可 ...

  9. 错误 6 未能找到类型或命名空间名称“BLL”(是否缺少 using 指令或程序集引用?)

    出现这个错误,要确保先引用BLL.dll, 如果引用之后还没有解决这个问题的话,确认一下程序集FrameWork版本与项目FrameWork版本一致.右击程序集属性可以更改.

  10. [LeetCode]25. Reverse Nodes in k-Group k个一组翻转链表

    Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. k ...