Topic modeling【经典模型】
http://www.cs.princeton.edu/~blei/topicmodeling.html
Topic models are a suite of algorithms that uncover the hidden thematic structure in document collections. These algorithms help us develop new ways to search, browse and summarize large archives of texts.
Below, you will find links to introductory materials, corpus browsers based on topic models, and open source software (from my research group) for topic modeling.
Introductory materials
- I wrote a general introduction to topic modeling.
- John Lafferty and I wrote a more technical review paper about this field.
- Here are slides from some recent tutorials about topic modeling:
- Here is a video from a talk on dynamic and correlated topic models applied to the journal Science . (Here are the slides.)
- David Mimno maintains a bibliography of topic modeling papers and software.
- The topic models mailing list is a good forum for discussing topic modeling.
Corpus browsers based on topic models
The structure uncovered by topic models can be used to explore an otherwise unorganized collection. The following are browsers of large collections of documents, built with topic models.
- A 100-topic browser of the dynamic topic model fit to Science (1882-2001).
- A 100-topic browserof the correlated topic model fit to Science (1980-2000)
- A 50-topic browser of latent Dirichlet allocation fit to the 2006 arXiv.
- A 20-topic browserof latent Dirichlet allocation fit to The American Political Science Review
Also see Sean Gerrish's discipline browser for an interesting application of topic modeling at JSTOR.
To build your own browsers, see Allison Chaney's excellent Topic Model Visualization Engine(TMVE). For example, here is a browser of 100,000 Wikipedia articles that uses TMVE.
Topic modeling software
Our research group has released many open-source software packages for topic modeling. Please post questions, comments, and suggestions about this code to the topic models mailing list.
Link | Model/Algorithm | Language | Author | Notes |
lda-c | Latent Dirichlet allocation | C | D. Blei | This implements variational inference for LDA. |
class-slda | Supervised topic models for classifiation | C++ | C. Wang | Implements supervised topic models with a categorical response. |
lda | R package for Gibbs sampling in many models | R | J. Chang | Implements many models and is fast . Supports LDA, RTMs (for networked documents), MMSB (for network data), and sLDA (with a continuous response). |
online lda | Online inference for LDA | Python | M. Hoffman | Fits topic models to massive data. The demo downloads random Wikipedia articles and fits a topic model to them. |
online hdp | Online inference for the HDP | Python | C. Wang | Fits hierarchical Dirichlet process topic models to massive data. The algorithm determines the number of topics. |
tmve(online) | Topic Model Visualization Engine | Python | A. Chaney | A package for creating corpus browsers. See, for example,Wikipedia. |
ctr | Collaborative modeling for recommendation | C++ | C. Wang | Implements variational inference for a collaborative topic models. These models recommend items to users based on item content and other users' ratings. |
dtm | Dynamic topic models and the influence model | C++ | S. Gerrish | This implements topics that change over time and a model of how individual documents predict that change. |
hdp | Hierarchical Dirichlet processes | C++ | C. Wang | Topic models where the data determine the number of topics. This implements Gibbs sampling. |
ctm-c | Correlated topic models | C | D. Blei | This implements variational inference for the CTM. |
diln | Discrete infinite logistic normal | C | J. Paisley | This implements the discrete infinite logistic normal, a Bayesian nonparametric topic model that finds correlated topics. |
hlda | Hierarchical latent Dirichlet allocation | C | D. Blei | This implements a topic model that finds a hierarchy of topics. The structure of the hierarchy is determined by the data. |
turbotopics | Turbo topics | Python | D. Blei | Turbo topics find significant multiword phrases in topics. |
Topic modeling【经典模型】的更多相关文章
- 用GibbsLDA做Topic Modeling
http://weblab.com.cityu.edu.hk/blog/luheng/2011/06/24/%E7%94%A8gibbslda%E5%81%9Atopic-modeling/#comm ...
- 论文《Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling》
Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling 一.主要贡献 1. pro ...
- 【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用
一.前述 VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的. 二.具体 1.因为本文中代码需 ...
- 【神经网络篇】--基于数据集cifa10的经典模型实例
一.前述 本文分享一篇基于数据集cifa10的经典模型架构和代码. 二.代码 import tensorflow as tf import numpy as np import math import ...
- 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...
- 大话CNN经典模型:VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC20 ...
- 大话CNN经典模型:AlexNet
2012年,Alex Krizhevsky.Ilya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LS ...
- 大话CNN经典模型:LeNet
近几年来,卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别中取得了非常成功的应用,成为深度学习的一大亮点.CNN发展至今,已经有很多变种,其中有 ...
- 【思维题 经典模型】cf632F. Magic Matrix
非常妙的经典模型转化啊…… You're given a matrix A of size n × n. Let's call the matrix with nonnegative elements ...
随机推荐
- 深入理解java虚拟机-第八章
第8章 虚拟机字节码执行引擎 8.2 运行时栈帧结构 栈帧(Stack Frame)是用于支持虚拟机进行方法调用和方法执行的数据结构. 每一个栈帧包括了局部变量表.操作数栈.动态连接.方法返回地址和一 ...
- YII缓存之数据缓存
1.开启缓存组件 2. ================ 二 先在配置文件components数组中加上: 'cache'=>array( 'class'=>'CFileCache'), ...
- VBA的过程及参数详解
VBA的过程及参数详解 VBA中的过程(Procedure)有两种,一种叫函数(Function),另外一种叫子程序(Subroutine),分别使用Function和Sub关键字.它们都是一个可以获 ...
- Oracle 13c OEM 安装手册
1 安装准备工作 以下包已Redhat 为准,其他版的操作系统以官方手册为准. 1.1 Oracle Management Service 依赖如下包 glibc-comm ...
- emqtt 3 (我要subscribe 这个topic)
这一次,主要分析client subscribe 某个topic 的处理流程. 由protocol开始 是的,还是要从protocol开始,至于为什么,之前就说过了. subscribe 类型的pac ...
- HTML5视频直播及H5直播扫盲
章来源:http://geek.csdn.net/news/detail/95188 分享内容简介: 目前视频直播,尤其是移动端的视频直播已经火到不行了,基本上各大互联网公司都有了自己的直播产品,所以 ...
- HTMLTestRunner生成报告 中文展示乱码的问题
- keepalived 预防脑裂检测脚本
1 检查vip [root@mysql2 keepalived]# cat /etc/keepalived/check_brain_keepalived.sh #!/bin/bash # 检查脑裂的脚 ...
- Python Twisted系列教程15:测试诗歌
作者:dave@http://krondo.com/tested-poetry/ 译者: Cheng Luo 你可以从”第一部分 Twist理论基础“开始阅读:也可以从”Twisted 入门!“浏览 ...
- sql中left join on where区别剖析
select from tb1 left join tb2 on tb1.xx=tb2.xx and tb2.xxxx=5 先筛选tb2.xxxx=5 再把tb1与筛选后的临时表进行左连接. sele ...