import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

#下载MINIST数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

#表示输入任意数量的MNIST图像,每一张图展平成784维的向量
#placeholder是占位符,在训练时指定
x = tf.placeholder(tf.float32, [None, 784])

#初始化W,b矩阵
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
#tf.matmul(​​X,W)表示x乘以W
y = tf.nn.softmax(tf.matmul(x, W) + b)

#为了计算交叉熵,我们首先需要添加一个新的占位符用于输入正确值
y_ = tf.placeholder("float", [None,10])

#交叉熵损失函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

#模型的训练,不断的降低成本函数
#要求TensorFlow用梯度下降算法(gradient descent algorithm)以0.01的学习速率最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

#在运行计算之前,需要添加一个操作来初始化我们创建的变量
init = tf.initialize_all_variables()

#在Session里面启动我模型,并且初始化变量
sess = tf.Session()
sess.run(init)

#开始训练模型,循环训练1000次
for i in range(50):
  #随机抓取训练数据中的100个批处理数据点
  batch_xs, batch_ys = mnist.train.next_batch(100)
  #然后我们用这些数据点作为参数替换之前的占位符来运行train_step
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

#检验真实标签与预测标签是否一致
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

#计算精确度,将true和false转化成相应的浮点数,求和取平均
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

#计算所学习到的模型在测试数据集上面的正确率
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

tensorflow实现Minist手写体识别的更多相关文章

  1. libsvm Minist Hog 手写体识别

    统计手写数字集的HOG特征 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 这篇文章是模式识别的小作业,利用sv ...

  2. MXNET手写体识别的例子

    安装完MXNet之后,运行了官网的手写体识别的例子,这个相当于深度学习的Hello world了吧.. http://mxnet.io/tutorials/python/mnist.html 运行的过 ...

  3. Tensorflow搭建卷积神经网络识别手写英语字母

    更新记录: 2018年2月5日 初始文章版本 近几天需要进行英语手写体识别,查阅了很多资料,但是大多数资料都是针对MNIST数据集的,并且主要识别手写数字.为了满足实际的英文手写识别需求,需要从训练集 ...

  4. keras入门--Mnist手写体识别

    介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input ...

  5. 深度学习-mnist手写体识别

    mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.t ...

  6. 入门项目数字手写体识别:使用Keras完成CNN模型搭建(重要)

    摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别. ...

  7. Python3实现简单可学习的手写体识别

    0.目录 1.前言 2.通过pymssql与数据库的交互 3.通过pyqt与界面的交互 4.UI与数据库的交互 5.最后的main主函数 1.前言 版本:Python3.6.1 + PyQt5 + S ...

  8. 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结

    折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...

  9. R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)

    本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:// ...

随机推荐

  1. SQL查询父节点下的所有子节点(包括子节点下的子节点,无限子节点)

    -->Title:Generating test data -->Author:wufeng4552 -->Date :2009-09-30 08:52:38 set nocount ...

  2. Andrew Ng机器学习编程作业: Linear Regression

    编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...

  3. Mysql 命令详解

    1.读取服务器变量:    show [global|session] variables;2.更改非静态(只读)变量:    set [global|session] <variable_na ...

  4. linux增加 路由使两个不同的网段可以访问

    举例:在交换机上有2个vlan 地址分别是192.168.10.1/24 192.168.20.1/24 2台server:一台A:server地址是192.168.10.3/24,一台B:serve ...

  5. Java基础—Java运行原理

    Java程序运行原理 在Java中引入了虚拟机(JVM,Java Virtual Machine)的概念,即在机器和编译程序之间加入了一层抽象的虚拟的机器.虚拟机在任何平台上都提供给编译程序一个的共同 ...

  6. 使用git工具上传项目到github步骤

    这里记录一下上传项目到github的步骤.使用的工具是Git bash. 1.登陆github,没有账户就注册一个,新建一个Repository(仓库). 2.绑定用户. 因为Git是分布式版本控制系 ...

  7. python学习之路-第二天-常见的注意事项(代码风格、运算符、优先级、控制语句)

    总结了今天学习几个注意事项: 对代码声明变量的时候没必要像以前写java或者c代码要声明数据类型,只需要赋值即可 代码一行基本只写一句逻辑行,而且尽量不在python里面写':' 明确的行连接'',暗 ...

  8. 前端基础之css样式(选择器)

    一.css概述 CSS是Cascading Style Sheets的简称,中文称为层叠样式表,对html标签的渲染和布局 CSS 规则由两个主要的部分构成:选择器,以及一条或多条声明. 例如 二.c ...

  9. js判断有无属性

    访问元素属性 getAttribute 不存在返回null,特性名可不区分大小写 dom对象访问公共属性,自定义属性不能访问,div.id 访问对象属性 1.使用in关键字 该方法可以判断对象的自有属 ...

  10. Ajax在jQuery中的应用---ajax()方法

    在jQuery中,$.ajax()方法是最底层的方法,也是功能最强的方法.其调用的语法格式为: $.ajax([options]) 其中,可选项参数[options]为$.ajax()方法中的请求设置 ...