package main

 import (
"fmt"
"math"
) //判断第k行的某一列放置是否合法
func check(col []int, k int) int {
for i := ; i < k; i++ {
if col[i] == col[k] || float64(k - i) == math.Abs(float64(col[k] - col[i])) {//与前部分行同列或者列之差的绝对值与两行之差的绝对值相等
return
}
}
return
} //迭代实现, 思想原理同着色问题
func n_queen(k int) []int{
var i int
col := make([]int, k)
for i = ; i < k; i++ {
col[i] =
}
for i = ; i >= ; {
for col[i] < k {
col[i]++
if check(col, i) > {
i++
}
if i == k {
return col
}
}
col[i] =
i--
}
return nil
} func main() {
k :=
res := n_queen(k)
if res != nil {
for i := ; i < k; i++ {
fmt.Print(res[i], "\t")
}
}
}

回溯法之n皇后问题的更多相关文章

  1. 回溯法解决N皇后问题(以四皇后为例)

    以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...

  2. 回溯法求解n皇后和迷宫问题

    回溯法是一种搜索算法,从某一起点出发按一定规则探索,当试探不符合条件时则返回上一步重新探索,直到搜索出所求的路径. 回溯法所求的解可以看做解向量(n皇后坐标组成的向量,迷宫路径点组成的向量等),所有解 ...

  3. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  4. C++使用回溯法实现N皇后问题的求解

    回溯法是个很无聊的死算方法,没什么技巧,写这篇博客主要原因是以前思路不太清晰,现在突然想用回溯法解决一个问题时,无法快速把思路转换成代码. ------------------------------ ...

  5. 用试探回溯法解决N皇后问题

    学校数据结构的课程实验之一. 数据结构:(其实只用了一个二维数组) 算法:深度优先搜索,试探回溯 需求分析: 设计一个在控制台窗口运行的“n皇后问题”解决方案生成器,要求实现以下功能: 由n*n个方块 ...

  6. 回溯法——求解N皇后问题

    问题描写叙述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后.使其不能互相攻击,即随意的两个皇后不能处在允许行.同一列,或允许斜线上. 能够把八皇后问题拓展 ...

  7. 递归回溯法求N皇后问题

    问题描述:在一个NN(比如44)的方格中,在每一列中放置一个皇后,要求放置的皇后不在同一行,同一列,同一斜线上,求一共有多少种放置方法,输出放置的数组. 思路解析:从(1,1)开始,一列一列的放置皇后 ...

  8. 回溯法解n皇后问题

    #include<bits/stdc++.h> using namespace std; int n,sum; int c[100]; void search(int cur){ if(c ...

  9. javascript实现数据结构: 树和二叉树的应用--最优二叉树(赫夫曼树),回溯法与树的遍历--求集合幂集及八皇后问题

    赫夫曼树及其应用 赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,有着广泛的应用. 最优二叉树(Huffman树) 1 基本概念 ① 结点路径:从树中一个结点到另一个结点的之间的分支 ...

随机推荐

  1. hoj 2715 (费用流 拆点)

    http://acm.hit.edu.cn/hoj/problem/view?id=2715 将每个格子 i 拆成两个点 i’, i’’并加边(i’, i’’, 1, -Vi), (i’, i’’, ...

  2. python中静态方法、类方法、属性方法区别

    在python中,静态方法.类方法.属性方法,刚接触对于它们之间的区别确实让人疑惑. 类方法(@classmethod) 是一个函数修饰符,表是该函数是一个类方法 类方法第一个参数是cls,而实例方法 ...

  3. 查看java进程的所有信息

    查看java 进程下的所有信息 ll /proc/pid/fd ru:ll /proc/24047/fd

  4. OC中nil、Nil、NULL、NSNull的区别

    nil:指向OC中对象的空指针 e.g.: NSString *string = nil; Nil:指向OC中类的空指针    e.g.:Class class = Nil; NULL:指向其他类型的 ...

  5. passback_params 支付回调的 原样返回字段 自定义字段的存放字段

    开放平台文档中心 https://docs.open.alipay.com/204/105465/ passback_params String 否 512 公用回传参数,如果请求时传递了该参数,则返 ...

  6. mesos cluster

    http://spark.apache.org/docs/latest/running-on-mesos.html http://stackoverflow.com/questions/1993985 ...

  7. Android系统移植与调试之------->build.prop文件详细赏析

    小知识:什么是build.prop?   /system/build.prop 是一个属性文件,在Android系统中.prop文件很重要,记录了系统的设置和改变,类似於/etc中的文件.这个文件是如 ...

  8. ThreadLocal (三):为何TransmittableThreadLocal

    一.示例 线程池内的线程并没有父子关系,所以不适合InheritableThreadLocal的使用场景 public class ThreadPoolInheritableThreadLocalDe ...

  9. Efficiency in Shell

    最近在写一个shell脚本, 由于该脚本对效率有较高的要求, 所以查阅了一些文章. 感觉这篇文章写得确实不错, 文章中的例子,确实很棒! 所 以我把他们提取出来: @1:实例: 需求:计算1到1000 ...

  10. asp.net(c#)中String.Empty、NULL、"" 三者到底有啥区别和联系?

    开门见山,首先看下面代码,你认为结果分别是什么? string str = string.Empty; string str1 = ""; string str2 = null; ...