CF702F T-Shirts FHQ Treap
题意翻译
题目大意:
有n种T恤,每种有价格ci和品质qi。有m个人要买T恤,第i个人有vi元,每人每次都会买一件能买得起的qi最大的T恤。一个人只能买一种T恤一件,所有人之间都是独立的。问最后每个人买了多少件T恤?
题目描述
The big consignment of t-shirts goes on sale in the shop before the beginning of the spring. In all n n n types of t-shirts go on sale. The t-shirt of the i i i -th type has two integer parameters — ci c_{i} ci and qi q_{i} qi , where ci c_{i} ci — is the price of the i i i -th type t-shirt, qi q_{i} qi — is the quality of the i i i -th type t-shirt. It should be assumed that the unlimited number of t-shirts of each type goes on sale in the shop, but in general the quality is not concerned with the price.
As predicted, k k k customers will come to the shop within the next month, the j j j -th customer will get ready to spend up to bj b_{j} bj on buying t-shirts.
All customers have the same strategy. First of all, the customer wants to buy the maximum possible number of the highest quality t-shirts, then to buy the maximum possible number of the highest quality t-shirts from residuary t-shirts and so on. At the same time among several same quality t-shirts the customer will buy one that is cheaper. The customers don't like the same t-shirts, so each customer will not buy more than one t-shirt of one type.
Determine the number of t-shirts which each customer will buy, if they use the described strategy. All customers act independently from each other, and the purchase of one does not affect the purchase of another.
输入输出格式
输入格式:
The first line contains the positive integer n n n ( 1<=n<=2⋅105 1<=n<=2·10^{5} 1<=n<=2⋅105 ) — the number of t-shirt types.
Each of the following n n n lines contains two integers ci c_{i} ci and qi q_{i} qi ( 1<=ci,qi<=109 1<=c_{i},q_{i}<=10^{9} 1<=ci,qi<=109 ) — the price and the quality of the i i i -th type t-shirt.
The next line contains the positive integer k k k ( 1<=k<=2⋅105 1<=k<=2·10^{5} 1<=k<=2⋅105 ) — the number of the customers.
The next line contains k k k positive integers b1,b2,...,bk b_{1},b_{2},...,b_{k} b1,b2,...,bk ( 1<=bj<=109 1<=b_{j}<=10^{9} 1<=bj<=109 ), where the j j j -th number is equal to the sum, which the j j j -th customer gets ready to spend on t-shirts.
输出格式:
The first line of the input data should contain the sequence of k k k integers, where the i i i -th number should be equal to the number of t-shirts, which the i i i -th customer will buy.
输入输出样例
说明
In the first example the first customer will buy the t-shirt of the second type, then the t-shirt of the first type. He will spend 10 and will not be able to buy the t-shirt of the third type because it costs 4, and the customer will owe only 3. The second customer will buy all three t-shirts (at first, the t-shirt of the second type, then the t-shirt of the first type, and then the t-shirt of the third type). He will spend all money on it.
朴素算法很好想,但TLE;
考虑用平衡树维护;
我们先将衬衫按quality排序;
然后对于每一件衬衫,我们在用人的钱构成的树中操作;
对于>=C[i] 的进行标记,然后下传;
但是-C[i]后,不一定满足merge的条件;
我们可以暴力对于重复的部分进行merge;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m, root;
int lson[maxn], rson[maxn], val[maxn], rnd[maxn];
int cnt[maxn], add[maxn], ans[maxn]; void pushdown(int v) {
if (add[v]) {
add[lson[v]] += add[v]; add[rson[v]] += add[v];
val[lson[v]] += add[v]; val[rson[v]] += add[v];
add[v] = 0;
}
if (ans[v]) {
ans[lson[v]] += ans[v]; ans[rson[v]] += ans[v];
cnt[lson[v]] += ans[v]; cnt[rson[v]] += ans[v];
ans[v] = 0;
}
} void split(int k, int &x, int &y, int v) {
if (!k) {
x = y = 0; return;
}
pushdown(k);
if (val[k] < v) {
x = k; split(rson[k], rson[x], y, v);
}
else {
y = k; split(lson[k], x, lson[y], v);
}
} int merge(int x, int y) {
if (!x || !y)return x + y;
if (rnd[x] < rnd[y]) {
pushdown(x); rson[x] = merge(rson[x], y);
return x;
}
else {
pushdown(y); lson[y] = merge(x, lson[y]);
return y;
}
} int ins(int x, int y) {
int r1 = 0, r2 = 0;
split(x, r1, r2, val[y]);
x = merge(merge(r1, y), r2);
return x;
} int build(int v, int y) {
if (!v)return y;
pushdown(v);
y = build(lson[v], y); y = build(rson[v], y);
lson[v] = rson[v] = 0;
return ins(y, v);
} void dfs(int v) {
if (!v)return;
pushdown(v);
dfs(lson[v]); dfs(rson[v]);
}
pii a[maxn]; int main()
{
//ios::sync_with_stdio(0);
n = rd(); int c, q;
for (int i = 1; i <= n; i++) {
c = rd(); q = rd();
a[i] = make_pair(-q, c);
}
sort(a + 1, a + 1 + n);
m = rd();
for (int i = 1; i <= m; i++) {
val[i] = rd();
rnd[i] = rand();
root = ins(root, i);
}
for (int i = 1; i <= n; i++) {
int c = a[i].second;
int r1 = 0, r2 = 0, r3 = 0, r4 = 0;
split(root, r1, r2, c);
val[r2] -= c; add[r2] -= c;
cnt[r2]++; ans[r2]++;
split(r2, r3, r4, c - 1);
r1 = build(r3, r1);
root = merge(r1, r4);
}
dfs(root);
for (int i = 1; i <= m; i++)printf("%d ", cnt[i]);
return 0;
}
CF702F T-Shirts FHQ Treap的更多相关文章
- FHQ Treap及其可持久化与朝鲜树式重构
FHQ Treap,又称无旋treap,一种不基于旋转机制的平衡树,可支持所有有旋treap.splay等能支持的操作(只有在LCT中会比splay复杂度多一个log).最重要的是,它是OI中唯一一种 ...
- fhq treap最终模板
新学习了fhq treap,厉害了 先贴个神犇的版, from memphis /* Treap[Merge,Split] by Memphis */ #include<cstdio> # ...
- NOI 2002 营业额统计 (splay or fhq treap)
Description 营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每 ...
- 【POJ2761】【fhq treap】A Simple Problem with Integers
Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...
- 【fhq Treap】bzoj1500(听说此题多码上几遍就能不惧任何平衡树题)
1500: [NOI2005]维修数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 15112 Solved: 4996[Submit][Statu ...
- 「FHQ Treap」学习笔记
话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...
- FHQ Treap摘要
原理 以随机数维护平衡,使树高期望为logn级别 不依靠旋转,只有两个核心操作merge(合并)和split(拆分) 因此可持久化 先介绍变量 ; int n; struct Node { int v ...
- FHQ Treap小结(神级数据结构!)
首先说一下, 这个东西可以搞一切bst,treap,splay所能搞的东西 pre 今天心血来潮, 想搞一搞平衡树, 先百度了一下平衡树,发现正宗的平衡树写法应该是在二叉查找树的基础上加什么左左左右右 ...
- 在平衡树的海洋中畅游(四)——FHQ Treap
Preface 关于那些比较基础的平衡树我想我之前已经介绍的已经挺多了. 但是像Treap,Splay这样的旋转平衡树码亮太大,而像替罪羊树这样的重量平衡树却没有什么实际意义. 然而类似于SBT,AV ...
- 浅谈fhq treap
一.简介 fhq treap 与一般的treap主要有3点不同 1.不用旋转 2.以merge和split为核心操作,通过它们的组合实现平衡树的所有操作 3.可以可持久化 二.核心操作 代码中val表 ...
随机推荐
- centos7使用frabric自动化部署LNMP
1.创建lnmp.py文件 $ vim lnmp.py ------------------------> #!/usr/bin/env python from fabric.colors im ...
- Mesh Filter & Mesh Render
[Mesh Filter] The Mesh Filter takes a mesh from your assets and passes it to the Mesh Renderer for r ...
- MySQL5.7插入中文乱码
参考: https://blog.csdn.net/kelay06/article/details/60870138 https://blog.csdn.net/itmr_liu/article/de ...
- 微信内置浏览器中的cookie很诡异呀
微信内置浏览器中的cookie很诡异呀 这是设置和删除COOKIE的代码 function set_cookie($var ,$value = '' ,$expire = 0){ $path = '/ ...
- 747. Largest Number At Least Twice of Others比所有数字都大两倍的最大数
[抄题]: In a given integer array nums, there is always exactly one largest element. Find whether the l ...
- CF407B Long Path
好玩的题. 首先我们(看一下题解之后)发现当你第一次走到了一个点的时候,那么它之前的所有点一定都访问过了偶数次. 假设我们第一次走到了一个点$i$,那么$i - 1$一定访问了偶数次,那么第一次走$i ...
- SpringMVC——数据转换 & 数据格式化 & 数据校验
一.数据绑定流程 1. Spring MVC 主框架将 ServletRequest 对象及目标方 法的入参实例传递给 WebDataBinderFactory 实例,以创 建 DataBinder ...
- bug记录:IE8,包含块min-height/height共存时的高度计算bug
问题的条件有: A元素是B元素的包含块. A元素设置overflow:hidden;,并同时设置了height和min-height,同时height计算值 < min-height 原生IE8 ...
- [存储过程]中的事务(rollback)回滚
在编写SQL Server 事务相关的存储过程代码时,经常看到下面这样的写法: begin tran update statement 1 ... update statement 2 ... del ...
- Java 享元设计