Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
[Submit][Status][Discuss]

Description

  对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

  第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

  共n行,每行一个整数表示满足要求的数对(x,y)的个数。

Sample Input

  2
  2 5 1 5 1
  1 5 1 5 2

Sample Output

  14
  3

HINT

  100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

Solution

  显然可以考虑容斥,分为四块来做,剩下的和BZOJ1101就一样了。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int Ax,Bx,Ay,By,k;
bool isp[ONE];
int prime[ONE],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i%prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} s64 Calc(int n,int m)
{
if(n > m) swap(n,m); int N = n/k, M = m/k; Ans = ;
for(int i=,j=; i<=N; i=j+)
{
j = min(N/(N/i), M/(M/i));
Ans += (s64)(N/i) * (M/i) * (miu[j] - miu[i-]);
} return Ans;
} void Solve()
{
Ax=get(); Bx=get(); Ay=get(); By=get(); k=get();
printf("%lld\n", Calc(Bx,By) - Calc(Ax-,By) - Calc(Ay-,Bx) + Calc(Ax-,Ay-));
} int main()
{
Getmiu(ONE-);
T=get();
while(T--)
Solve();
}

【BZOJ2301】【HAOI2011】Problem b [莫比乌斯反演]的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  3. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  4. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  10. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. Django-Content-type用法

    from django.db import models from django.contrib.contenttypes.models import ContentType from django. ...

  2. 学习SQLite基本语句

    SQLite 是一个开源的嵌入式关系数据库,实现自包容.零配置.支持事务的SQL数据库引擎. 其特点是高度便携.使用方便.结构紧凑.高效.可靠. 与其他数据库管理系统不同,SQLite 的安装和运行非 ...

  3. springmvc基础篇—通过注解的方式去配置项目

    学习了通过xml方式去配置项目后,当然要掌握更简单更灵活的注解方式哟,这是官方推荐使用的方式. 一.修改配置文件,建议大家直接使用我的配置文件 <?xml version="1.0&q ...

  4. Vue学习(五):列表渲染

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. C++学习008-delete与delete[]的差别

    对于简单的数据类型,delete与delete[]是没啥差别的,就是等价的 例如 int main() { int *pdata = new int[20]; delete pdata; //dele ...

  6. Qt 建立带有子项目的工程

    刚需,软件需要用到多个子项目 第一步 打开Qt新建子项目工程 如图 在此时鼠标右键,选着新建子项目如图 就是正常的新建项目的步骤,直接上图 完工,可以愉快的撸代码了

  7. 一丶人生苦短,我用python【第一篇】

    1 解释器 解释器(英语:Interpreter),又译为直译器,是一种电脑程序,能够把高级编程语言一行一行直接转译运行.解释器不会一次把整个程序转译出来,只像一位"中间人",每次 ...

  8. Unity动态换装之Spine换装

    注:转载请注明转载,并附原链接 http://www.cnblogs.com/liaoguipeng/p/5867510.html 燕双飞情侣 一.动态换装原理 换装,无非就是对模型的网格,或者贴图进 ...

  9. Spring实战第八章学习笔记————使用Spring Web Flow

    Spring实战第八章学习笔记----使用Spring Web Flow Spring Web Flow是一个Web框架,它适用于元素按规定流程运行的程序. 其实我们可以使用任何WEB框架写流程化的应 ...

  10. 【SSH】——Hibernate三种状态之间的转化

    Hibernate的三种状态为:transient.persistent和detached.对这三种状态的理解可以结合Session缓存,在Session缓存中的状态为persistent,另外两种不 ...