过拟合(overfitting):

实际操作过程中,无论是线性回归还是逻辑回归,其假设函数h(x)都是人为设定的(尽管可以通过实验选择最优)。

这样子就可能出线“欠拟合”或者“过拟合”现象。

所谓过拟合,就是模型复杂度过高,模型很好地拟合了训练样本却对未知样本的预测能力不足。(亦称"泛化"能力不足)

所谓欠拟合,就是模型复杂度过低,模型不能很好拟合不管是训练样本还是其他样本。

例子:

如果输出与输入大致成二次关系,

那么我们用一次函数去拟合,拟合结果过于平缓,跟不上变化,这就是“欠拟合”

用3、4次函数去拟合,则会出现过多的“抖动”,这就是“过拟合”

如图,

线性回归中的“欠拟合”和“过拟合”,可见"欠拟合"不能贴近数据的变化,而"过拟合"产生了过多的"抖动"

逻辑回归中的“欠拟合”和“过拟合”,“欠拟合”不能很好的进行分类,“过拟合”则过多地受到特例的影响,不能给出具有良好泛化能力的方程

实际操作当中,由于过拟合的影响可以通过增大训练数据量来减轻,和正则化

所以一般建模宁over不under。


Regularization(正则化):

正则化希望在代价函数中增加惩罚项来减少过拟合项的系数的大小,以减少过拟合项的影响。

惩罚因子  :

(好难看……)

修改后的代价函数:

线性:

逻辑:

  *用本专业的知识可以这么理解:对于一个模型,我们希望尽量用低次函数拟合得到良好效果,尽量少用高次函数(高频抖动囧rz)。

   如果一个模型欠拟合,其前面的cost会过高;如果一个函数过拟合,高次函数系数较大,后面的正则惩罚项的cost又会过高。

   所以学习过程会自动平衡模型的复杂程度,得到一个对训练样本和未知样本都能良好拟合的模型。(当然得调参)

然后用修改后的代价方程进行梯度下降的计算即可(加多了一项,偏导很容易算吧)

注意:常数项的系数我们并不进行“惩罚”,所以常数项的偏导与其他项的偏导计算有些许不同。

Deep Learning 学习笔记(5):Regularization 规则化的更多相关文章

  1. 【deep learning学习笔记】注释yusugomori的DA代码 --- dA.h

    DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别 ...

  2. [置顶] Deep Learning 学习笔记

    一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不 ...

  3. Deep Learning 学习笔记(8):自编码器( Autoencoders )

    之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得 ...

  4. 【deep learning学习笔记】Recommending music on Spotify with deep learning

    主要内容: Spotify是个类似酷我音乐的音乐站点.做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 详细内容: 1. 协同过滤 基本原理:某两个用户听的歌曲 ...

  5. 【deep learning学习笔记】注释yusugomori的RBM代码 --- 头文件

    百度了半天yusugomori,也不知道他是谁.不过这位老兄写了deep learning的代码,包括RBM.逻辑回归.DBN.autoencoder等,实现语言包括c.c++.java.python ...

  6. Neural Networks and Deep Learning学习笔记ch1 - 神经网络

    近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...

  7. paper 149:Deep Learning 学习笔记(一)

     1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351? ...

  8. Deep Learning 学习笔记——第9章

    总览: 本章所讲的知识点包括>>>> 1.描述卷积操作 2.解释使用卷积的原因 3.描述pooling操作 4.卷积在实践应用中的变化形式 5.卷积如何适应输入数据 6.CNN ...

  9. 【Deep Learning学习笔记】Dynamic Auto-Encoders for Semantic Indexing_Mirowski_NIPS2010

    发表于NIPS2010 workshop on deep learning的一篇文章,看得半懂. 主要内容: 是针对文本表示的一种方法.文本表示可以进一步应用在文本分类和信息检索上面.通常,一篇文章表 ...

  10. 【deep learning学习笔记】最近读的几个ppt(四)

    这几个ppt都是在微博上看到的,是百度的一个员工整理的. <Deep Belief Nets>,31页的一个ppt 1. 相关背景 还是在说deep learning好啦,如特征表示云云. ...

随机推荐

  1. Java 文件上传中转

    org.apache.commons.httpclient.methods.multipart Class MultipartRequestEntity java.lang.Object org.ap ...

  2. 基于Spring MVC实现基于form表单上传Excel文件,批量导入数据

    在pom.xml中引入: <!--处理2003 excel--> <dependency> <groupId>org.apache.poi</groupId& ...

  3. visualvm监控jvm及远程jvm监控方法

    VisualVM是Sun的一个OpenJDK项目,其目的在于为Java应用创建一个整套的问题解决工具.它集成了多个JDK命令工具的一个可视化工具,它主要用来监控JVM的运行情况,可以用它来查看和浏览H ...

  4. Ajax中的XMLHttpRequest对象详解(转)

    XMLHttpRequest对象是Ajax技术的核心.在Internet Explorer 5中,XMLHttpRequest对象以ActiveX对象引入,被称之为XMLHTTP,它是一种支持异步请求 ...

  5. python基础之继承原理,多态与封装

    1.什么是继承? 继承是一种创建新的类的方式.class A: passclass B: pass2.如何继承---->如何寻找继承关系 现实生活中找继承关系是自下而上,在程序中写是自上而下继承 ...

  6. LeetCode OJ:Pascal's TriangleII(帕斯卡三角II)

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  7. 《转》浅谈EJB

    ejb一直是一个让我很纠结的技术,虽然ejb作为sun推荐的最佳实践,在sun的J2EE教程中,推荐jsp和servlet作为view层,ejb作为业务逻辑层. 上述就是J2EE教程讲J2EE体系中J ...

  8. JavaScript能做的事 是不是jQuery都能做>?

    比如修改表单中的action 并实现跳转  问题是此时没有点击表单中的submit 提交按钮?

  9. “一键”知道自己的IP地址和网络供应商

    打开浏览器,然后在地址栏里面输入“www.baidu.com” 进入百度主页以后,在搜索框内输入 “ip”,然后回车就可以了

  10. jdk1.8 HashMap 实现 数组+链表/红黑树

    转载至 http://www.cnblogs.com/leesf456/p/5242233.html 一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Ja ...