个人心得:这在一定途径上完成查询方面还是很吃力,得多锻炼空间能力,不能再每次都看到就后退,要全力应对,

那怕被虐的不要不要的。

这题主要是求俩个端点中所有路径中最大构成的集合中最小的数值,其实开始思想已经到触及到了这一块,

就想着从一直衍生每次都是max更新,但最终点那里还是卡了一下,还有自己的算法很容易就被突兀的途径给打乱了。

Floyd算法挺不错的,进行一点点的改变就好了,他就是保存每个端点中的最大值的最小值,你想呀,你如果到一个端点,其实在

延伸的时候就已经得到了这条途径的最大值了,比如5端点,你可以从1-3,3-5,则你判断的时候就只要将1-3端点的最大值和3-5端点

的值进行对比就得到了,此时再与5端点所存在的最大值比较就好了

核心算法就是

  1. for(int k=;k<=x;k++)
  2. for(int i=;i<=x;i++)
  3. for(int j=;j<=x;j++)
  4. if(decibel[i][k]!=inf&&decibel[k][j]!=inf)
  5. decibel[i][j]=min(decibel[i][j],max(decibel[i][k],decibel[k][j]));

Consider yourself lucky! Consider yourself lucky to be still breathing and having fun participating in this contest. But we apprehend that many of your descendants may not have this luxury. For, as you know, we are the dwellers of one of the most polluted cities on earth. Pollution is everywhere, both in the environment and in society and our lack of consciousness is simply aggravating the situation. However, for the time being, we will consider only one type of pollution - the sound pollution. The loudness or intensity level of sound is usually measured in decibels and sound having intensity level 130 decibels or higher is considered painful. The intensity level of normal conversation is 6065 decibels and that of heavy traffic is 7080 decibels. Consider the following city map where the edges refer to streets and the nodes refer to crossings. The integer on each edge is the average intensity level of sound (in decibels) in the corresponding street. To get from crossing A to crossing G you may follow the following path: A-C-F-G. In that case you must be capable of tolerating sound intensity as high as 140 decibels. For the paths A-B-E-G, A-B-D-G and A-C-F-D-G you must tolerate respectively 90, 120 and 80 decibels of sound intensity. There are other paths, too. However, it is clear that A-C-F-D-G is the most comfortable path since it does not demand you to tolerate more than 80 decibels. In this problem, given a city map you are required to determine the minimum sound intensity level you must be able to tolerate in order to get from a given crossing to another. Input The input may contain multiple test cases. The first line of each test case contains three integers C(≤ 100), S(≤ 1000) and Q(≤ 10000) where C indicates the number of crossings (crossings are numbered using distinct integers ranging from 1 to C), S represents the number of streets and Q is the number of queries. Each of the next S lines contains three integers: c1, c2 and d indicating that the average sound intensity level on the street connecting the crossings c1 and c2 (c1 ̸= c2) is d decibels. Each of the next Q lines contains two integers c1 and c2 (c1 ̸= c2) asking for the minimum sound intensity level you must be able to tolerate in order to get from crossing c1 to crossing c2. The input will terminate with three zeros form C, S and Q. Output For each test case in the input first output the test case number (starting from 1) as shown in the sample output. Then for each query in the input print a line giving the minimum sound intensity level (in decibels) you must be able to tolerate in order to get from the first to the second crossing in the query. If there exists no path between them just print the line “no path”. Print a blank line between two consecutive test cases.

Sample Input

7 9 3

1 2 50

1 3 60

2 4 120

2 5 90

3 6 50

4 6 80

4 7 70

5 7 40

6 7 140

1 7

2 6

6 2

7 6 3

1 2 50

1 3 60

2 4 120

3 6 50

4 6 80

5 7 40

7 5

1 7

2 4

0 0 0

Sample Output

Case #1

80 60 60

Case #2

40 no path 80

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cmath>
  4. #include<cstring>
  5. #include<iomanip>
  6. #include<algorithm>
  7. using namespace std;
  8. const long long inf=;
  9. int x,y,z;;
  10. int decibel[][];
  11. void init()
  12. {
  13. for(int i=;i<=x;i++)
  14. for(int j=;j<=x;j++)
  15. if(i==j) decibel[i][j]=;
  16. else decibel[i][j]=inf;
  17.  
  18. }
  19. int main()
  20. {
  21. int flag=;
  22. while(cin>>x>>y>>z)
  23. {
  24.  
  25. if(!x&&!y&&!z) break;
  26. init();
  27. for(int i=;i<=y;i++)
  28. {
  29. int m,n,q;
  30. scanf("%d%d%d",&m,&n,&q);
  31. if(decibel[m][n]>q)
  32. decibel[m][n]=decibel[n][m]=q;
  33.  
  34. }
  35. if(flag>) cout<<endl;
  36. for(int k=;k<=x;k++)
  37. for(int i=;i<=x;i++)
  38. for(int j=;j<=x;j++)
  39. if(decibel[i][k]!=inf&&decibel[k][j]!=inf)
  40. decibel[i][j]=min(decibel[i][j],max(decibel[i][k],decibel[k][j]));
  41. cout<<"Case #"<<flag++<<endl;
  42. for(int i=;i<=z;i++)
  43. {
  44. int m,n;
  45. scanf("%d%d",&m,&n);
  46. if(decibel[m][n]!=inf)
  47. cout<<decibel[m][n]<<endl;
  48. else
  49. cout<<"no path"<<endl;
  50.  
  51. }
  52. }
  53. return ;
  54. }

Audiophobia(Floyd算法)的更多相关文章

  1. Uvaoj 10048 - Audiophobia(Floyd算法变形)

    1 /* 题目大意: 从一个点到达另一个点有多条路径,求这多条路经中最大噪音值的最小值! . 思路:最多有100个点,然后又是多次查询,想都不用想,Floyd算法走起! */ #include< ...

  2. 【uva 10048】Audiophobia(图论--Floyd算法)

    题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...

  3. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  4. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  5. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  6. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

  7. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

  8. Floyd算法(二)之 C++详解

    本章是弗洛伊德算法的C++实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.c ...

  9. Floyd算法(一)之 C语言详解

    本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...

随机推荐

  1. jelly

    http://pwnny.cn/original/2016/06/26/MakeBlog.html#NativeBuild01 Jekyll和Github搭建个人静态博客

  2. Redis的分布式配置

    Redis存在三种级别的分布式部署:主从复制.主从切换.集群配置,推荐使用主从切换模式. 主从复制 启动主服务:端口6379 启动从服务:端口6380, 配置文件中加上 slaveof 127.0.0 ...

  3. 【转载】wget 命令用法详解

    wget是在Linux下开发的开放源代码的软件,作者是Hrvoje Niksic,后来被移植到包括Windows在内的各个平台上.它有以下功能和特点:(1)支持断点下传功能:这一点,也是网络蚂蚁和Fl ...

  4. HGVS的变异格式

    符号: 1.HGVS的变异格式由两部分组成: 1.1 reference sequence file identifier (accession.version-number) :  actual d ...

  5. 生信基础概念之unique reads VS multi-mapping reads

    unique reads:在参考组上只有一个匹配点 multi-mapping reads:在参考组上有多个匹配点 下面是tophat的一个结果案例: Reads: Input : Mapped : ...

  6. kubernetes 核心对象

    Pods Pod是Kubernetes的基本操作单元,也是应用运行的载体.整个Kubernetes系统都是围绕着Pod展开的,比如如何部署运行Pod.如何保证Pod的数量.如何访问Pod等.另外,Po ...

  7. Docker 搭建一个Docker应用栈

    Docker应用栈结构图 Build Django容器 编写docker-file FROM django RUN pip install redis build django-with-redis ...

  8. DP问题分类总结

    http://m.blog.csdn.net/y990041769/article/details/24194605 此博客总结了动态规划相关问题,学习一下!

  9. constexpr与指针

    一. 常量表达式:是指值不会改变并且在编译过程就能得到的计算结果的表达式. 定义常量表达式变量: constexpr 变量类型 变量名: 例如: constexpr int mf=20://///20 ...

  10. Sqoop将MySQL表结构同步到hive(text、orc)

    Sqoop将MySQL表结构同步到hive sqoop create-hive-table --connect jdbc:mysql://localhost:3306/sqooptest --user ...