个人心得:这在一定途径上完成查询方面还是很吃力,得多锻炼空间能力,不能再每次都看到就后退,要全力应对,

那怕被虐的不要不要的。

这题主要是求俩个端点中所有路径中最大构成的集合中最小的数值,其实开始思想已经到触及到了这一块,

就想着从一直衍生每次都是max更新,但最终点那里还是卡了一下,还有自己的算法很容易就被突兀的途径给打乱了。

Floyd算法挺不错的,进行一点点的改变就好了,他就是保存每个端点中的最大值的最小值,你想呀,你如果到一个端点,其实在

延伸的时候就已经得到了这条途径的最大值了,比如5端点,你可以从1-3,3-5,则你判断的时候就只要将1-3端点的最大值和3-5端点

的值进行对比就得到了,此时再与5端点所存在的最大值比较就好了

核心算法就是

 for(int k=;k<=x;k++)
for(int i=;i<=x;i++)
for(int j=;j<=x;j++)
if(decibel[i][k]!=inf&&decibel[k][j]!=inf)
decibel[i][j]=min(decibel[i][j],max(decibel[i][k],decibel[k][j]));

Consider yourself lucky! Consider yourself lucky to be still breathing and having fun participating in this contest. But we apprehend that many of your descendants may not have this luxury. For, as you know, we are the dwellers of one of the most polluted cities on earth. Pollution is everywhere, both in the environment and in society and our lack of consciousness is simply aggravating the situation. However, for the time being, we will consider only one type of pollution - the sound pollution. The loudness or intensity level of sound is usually measured in decibels and sound having intensity level 130 decibels or higher is considered painful. The intensity level of normal conversation is 6065 decibels and that of heavy traffic is 7080 decibels. Consider the following city map where the edges refer to streets and the nodes refer to crossings. The integer on each edge is the average intensity level of sound (in decibels) in the corresponding street. To get from crossing A to crossing G you may follow the following path: A-C-F-G. In that case you must be capable of tolerating sound intensity as high as 140 decibels. For the paths A-B-E-G, A-B-D-G and A-C-F-D-G you must tolerate respectively 90, 120 and 80 decibels of sound intensity. There are other paths, too. However, it is clear that A-C-F-D-G is the most comfortable path since it does not demand you to tolerate more than 80 decibels. In this problem, given a city map you are required to determine the minimum sound intensity level you must be able to tolerate in order to get from a given crossing to another. Input The input may contain multiple test cases. The first line of each test case contains three integers C(≤ 100), S(≤ 1000) and Q(≤ 10000) where C indicates the number of crossings (crossings are numbered using distinct integers ranging from 1 to C), S represents the number of streets and Q is the number of queries. Each of the next S lines contains three integers: c1, c2 and d indicating that the average sound intensity level on the street connecting the crossings c1 and c2 (c1 ̸= c2) is d decibels. Each of the next Q lines contains two integers c1 and c2 (c1 ̸= c2) asking for the minimum sound intensity level you must be able to tolerate in order to get from crossing c1 to crossing c2. The input will terminate with three zeros form C, S and Q. Output For each test case in the input first output the test case number (starting from 1) as shown in the sample output. Then for each query in the input print a line giving the minimum sound intensity level (in decibels) you must be able to tolerate in order to get from the first to the second crossing in the query. If there exists no path between them just print the line “no path”. Print a blank line between two consecutive test cases.

Sample Input

7 9 3

1 2 50

1 3 60

2 4 120

2 5 90

3 6 50

4 6 80

4 7 70

5 7 40

6 7 140

1 7

2 6

6 2

7 6 3

1 2 50

1 3 60

2 4 120

3 6 50

4 6 80

5 7 40

7 5

1 7

2 4

0 0 0

Sample Output

Case #1

80 60 60

Case #2

40 no path 80

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iomanip>
#include<algorithm>
using namespace std;
const long long inf=;
int x,y,z;;
int decibel[][];
void init()
{
for(int i=;i<=x;i++)
for(int j=;j<=x;j++)
if(i==j) decibel[i][j]=;
else decibel[i][j]=inf; }
int main()
{
int flag=;
while(cin>>x>>y>>z)
{ if(!x&&!y&&!z) break;
init();
for(int i=;i<=y;i++)
{
int m,n,q;
scanf("%d%d%d",&m,&n,&q);
if(decibel[m][n]>q)
decibel[m][n]=decibel[n][m]=q; }
if(flag>) cout<<endl;
for(int k=;k<=x;k++)
for(int i=;i<=x;i++)
for(int j=;j<=x;j++)
if(decibel[i][k]!=inf&&decibel[k][j]!=inf)
decibel[i][j]=min(decibel[i][j],max(decibel[i][k],decibel[k][j]));
cout<<"Case #"<<flag++<<endl;
for(int i=;i<=z;i++)
{
int m,n;
scanf("%d%d",&m,&n);
if(decibel[m][n]!=inf)
cout<<decibel[m][n]<<endl;
else
cout<<"no path"<<endl; }
}
return ;
}

Audiophobia(Floyd算法)的更多相关文章

  1. Uvaoj 10048 - Audiophobia(Floyd算法变形)

    1 /* 题目大意: 从一个点到达另一个点有多条路径,求这多条路经中最大噪音值的最小值! . 思路:最多有100个点,然后又是多次查询,想都不用想,Floyd算法走起! */ #include< ...

  2. 【uva 10048】Audiophobia(图论--Floyd算法)

    题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...

  3. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  4. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  5. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  6. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

  7. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

  8. Floyd算法(二)之 C++详解

    本章是弗洛伊德算法的C++实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.c ...

  9. Floyd算法(一)之 C语言详解

    本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...

随机推荐

  1. PAT 天梯赛 L1-020. 帅到没朋友 【STL】

    题目链接 https://www.patest.cn/contests/gplt/L1-020 思路 对于每个 K >= 2 的朋友圈,里面的所有 ID 都用 MAP 标记一下 对于每个 K = ...

  2. 【LeetCode】【动态规划】表格移动问题

    前言 这里总结了两道表格移动的问题,分别是:Unique Paths 和 题一:Unique Paths 描述 A robot is located at the top-left corner of ...

  3. [原创]spring及springmvc精简版--继承数据源,声明式事物

    1.前期:导入c3p0 jar包,相关数据库连接jar包,我用的是mysql 2.关注事物管理器的配置和AOP配置 代码: 核心关注bean配置文件 application.xml <?xml ...

  4. SOA 面向服务架构 阅读笔记(五)

    14 SOA 服务管理器 契约:契约中必须明确定义双方的责任,否则就会产生混乱. SOA可以管理端到端的流程. IT技术一直是与业务对齐的. 14.1.1 分解IT层 业务服务层 管道层 硬件层 管道 ...

  5. 跨平台移动开发 Android使用JPush推送消息

    二话不说,直接上图,看效果 第一步在官网下载 Android Push SDK https://www.jpush.cn/sdk/android 第二步 创建注册帐号,应用 第三步  下载应用,导入l ...

  6. CSS3动画库animate.css

    在线演示 本地下载

  7. 为多个文件夹下的C源代码编写Makefile文件

    上一篇文章写了如何为在同一个文件夹下的C源代码,本篇文章为多个文件夹下的C源代码编写Makefile文件. 建立两个文件夹,分别为abs与src.其最终目录结构如下: 1 $ ls * 2 jun.c ...

  8. js正则表达式验证(化繁为简)

    以前用js写正则表达式验证,每一个文本框后面都要添加一个onblur函数,验证的信息少,也没体会到有多繁琐,这次项目中的页面比较多,页面中的信息也比较多,如果每个文本框都加一个验证函数的话,js验证代 ...

  9. Apache Phoenix的Join操作和优化

    估计Phoenix中支持Joins,对很多使用Hbase的朋友来说,还是比较好的.下面我们就来演示一下. 首先看一下几张表的数据: Orders表: OrderID CustomerID ItemID ...

  10. MYSQL进阶学习笔记一:MySQL编码设定,会话变量和全局变量!(视频序号:进阶_1-3)

    知识点一:MySQL编码设定(1-2) 服务器编码设定: 查看MySQL服务器端的编码格式: SHOW VARIABLES LIKE ‘char%’; 设定编码格式: SET NAMES ‘utf8’ ...