题目链接:http://acm.neu.edu.cn/hustoj/problem.php?id=1132

和UVa11354很类似

题意:

原先有一棵树,每次加一条边,看最小生成树大小;

这个和增量最小生成树,还是有一点点差别的,就是,正版增量最小生成树,是每次加入一条边后,删掉那个换里面的最大权,当然这里没有这个;

每次的找LCA,我猜可能LCA都会超时吧,没事过,也有可能可以,但是,因为是一直是之前的那棵树,还不如一次性算出来dis i 到 j 的最长路;

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn =  + ;

 struct Edge
{
int from,to,dist;
}; vector<Edge> G[maxn];
int pa[maxn];
bool vis[maxn];
int dis[maxn][maxn]; void dfs(int u,int fa)
{
int d = G[u].size();
for(int i=; i<d; i++)
{
int v = G[u][i].to;
if(v!=fa)
dfs(v,pa[v]=u);
}
} void _dfs(int k,int cur,int cost) {
vis[cur] = ; int d = G[cur].size();
for(int i=;i<d;i++) {
if(!vis[G[cur][i].to]) {
dis[k][G[cur][i].to] = max(cost,max(dis[k][G[cur][i].to],G[cur][i].dist));
int v = G[cur][i].to;
_dfs(k,v,dis[k][v]);
}
} } int main()
{
int n;
int kase = ;
while(scanf("%d",&n)!=EOF)
{
printf("Test #%d\n",++kase); for(int i=;i<n;i++)
G[i].clear(); int sum = ;
for(int i=; i<n-; i++)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
u--;
v--;
sum+=d;
G[u].push_back((Edge)
{
u,v,d
});
G[v].push_back((Edge)
{
v,u,d
});
dis[u][v] = d;
dis[v][u] = d;
}
pa[] = -;
dfs(,-); for(int i=;i<n;i++) {
memset(vis,,sizeof(vis));
vis[i] = ;
_dfs(i,i,);
} int q;
scanf("%d",&q); while(q--)
{
memset(vis,,sizeof(vis));
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
u--;
v--; int maxx = ; maxx = dis[u][v]; if(maxx>d)
printf("%d\n",sum-maxx+d);
else printf("%d\n",sum); }
} return ;
}

NEUACM1132: Renew MST Quickly 增量最小生成树的更多相关文章

  1. poj 1679 The Unique MST(唯一的最小生成树)

    http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  2. Codeforces 1108F MST Unification(最小生成树性质)

    题目链接:MST Unification 题意:给定一张连通的无向带权图.存在给边权加一的操作,求最少操作数,使得最小生成树唯一. 题解:最小生成树在算法导论中有这个性质: 把一个连通无向图的生成树边 ...

  3. POJ 1679 The Unique MST 【判断最小生成树是否唯一】

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique.  Defini ...

  4. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  5. CF F. MST Unification (最小生成树避圈法)

    题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为 ...

  6. POJ1679 The Unique MST(Kruskal)(最小生成树的唯一性)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27141   Accepted: 9712 D ...

  7. AT3611 Tree MST 点分治+最小生成树

    正解:点分治+最小生成树 解题报告: 传送门! 然后这题麻油翻译,,,所以这边的建议是先说下题意呢亲 所以题意大概就是说,给一棵n个节点的树,树上每个点都有个权值,然后构造一个完全图,(u,v)之间连 ...

  8. (F. MST Unification)最小生成树

    题目链接:http://codeforces.com/contest/1108/problem/F 题目大意:给你n个点和m条边,然后让你进行一些操作使得这个图的最小生成树唯一,每次的操作是给某一条边 ...

  9. The Unique MST POJ - 1679 最小生成树判重

    题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...

随机推荐

  1. oracle 集群RAC搭建--环境准备

    一,环境介绍 目前我本身环境已经有DG,正在尝试重做搭建.如需完成请移步往期文章--搭建DG

  2. Ubuntu Server 14 配置

    语言 在虚拟机中安装了Ubuntu Server. Ubuntu Server只有控制台,没有图形界面.要在控制台下安装中文支持很麻烦.所以直接设置为英文,反正我看得懂. 在安装的时候必须将" ...

  3. 信号和槽:Qt中最差劲的创造

    不要被这个标题唬住了,实际上我是非常认可Qt的.在C++实现的开源产品中没有哪一个的API风格比得上Qt,拥有高度一致性,符合常识,符合直觉,几乎不用学就可以直接上手.或许是由于我们摆脱不了马太效应的 ...

  4. Markdown简易使用

    Markdown 笔记 标题 1.一级标题 2.二级标题 3.三级标题 列表 这是 一个 无序列表 这是 一个 有序列表 引用 这是一条引用 图片与链接 图片 链接 Baidu 粗体与斜体 粗体 斜体 ...

  5. elasticsearch 2.4.0执行update的时候发现的一个问题

    请关注inline参数的变化 正确: POST /test/type1/1/_update{ "script" : { "inline": "ctx. ...

  6. js判断触摸方向

    $("body").on("touchstart", function(e) { e.preventDefault(); startX = e.original ...

  7. [转] .net core Session , Working with a distributed cache

    本文转自:https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed By Steve Smith+ Di ...

  8. C#IO流文件操作

    文件流 创建文件流 读写文件的第一步就是创建文件流,流是一个用于数据传输的个对象,它是FileStream类型,在创建一个文件流是需要在他的构造中指定参数 语法: FileStream 文件流对象=n ...

  9. 接收sql语句的返回值

    首先,简要介绍一下我们需要什么? 我们想在sql中用 try...catch,如果成功,就返回我们查询的值,如果失败就返回-1 所以有了以下sql语句(写在后台的) string myInsert = ...

  10. 3、Angular2 Input

    3.理解@input