题目链接:https://www.luogu.org/problemnew/show/P1306#sub

gcd(f[m],f[n]) = f[gcd(m,n)]

 #include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
const int maxn = ;
long long n, m;
long gcd(long long x, long long y)
{
if(x%y == ) return y;
else return gcd(y,x%y);
}
long long f[maxn] = {,,};
int main()
{
scanf("%lld%lld",&n,&m);
long long mn = gcd(n,m); for(int i = ; i <= mn; i++)
f[i] = (f[i-] + f[i-])%; printf("%lld",f[mn]);
}

【luogu P1306 斐波那契公约数】 题解的更多相关文章

  1. 【Luogu】P1306 斐波那契公约数 题解

    原题链接 嗯...很多人应该是冲着这个标题来的 (斐波那契的魅力) 1.分析题面 点开题目,浏览一遍题目,嗯?这么简单?还是蓝题? 再看看数据范围,感受出题人深深的好意... \(n,m \leq 1 ...

  2. Luogu P1306 斐波那契公约数

    这道题其实是真的数学巨佬才撸的出来的题目了 但如果只知道结论但是不知道推导过程的我感觉证明无望 首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题 所以就暗示我们直接上矩阵了啦 但是如果直接搞 ...

  3. 洛谷 P1306 斐波那契公约数 题解

    题面 结论:gcd(F[n],F[m])=F[gcd(n,m)]; F[n]=a和F[n+1]=b F[n+2]=a+b,F[n+3]=a+2b,…F[m]=F[m?n?1]a+F[m?n]b F[n ...

  4. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

  5. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  6. 洛谷 P1306 斐波那契公约数 解题报告

    P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...

  7. 洛谷——P1306 斐波那契公约数

    P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输 ...

  8. P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  9. 【Luogu】P1306斐波那契公约数(递推)

    题目链接 有个定理叫gcd(f(n),f(m))=f(gcd(n,m)) 所以递推就好了. #include<cstdio> #include<cstdlib> #includ ...

随机推荐

  1. 九度oj题目1027:欧拉回路

    题目1027:欧拉回路 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2844 解决:1432 题目描述:     欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条 ...

  2. nyoj 10——skiing————————【记忆化搜索】

    skiing 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当 ...

  3. 对SNMP4J的一些封装

    SNMP4J是一个开源的,用Java实现的snmp协议.其中提供了一下API,在这些API上面封装了一些方法,比如SNMP的get-request请求,get-next-request请求等 如果不了 ...

  4. initBinder转换日期格式

    @Controller public class FirstController { @RequestMapping("/first") //类型转化工作一定是在真正的handle ...

  5. 位运算(4)——Missing Number

    Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the one that is missin ...

  6. JSON初试

    本次在课堂上老师教我使用JSON. 本次的教学网站是:https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON?td ...

  7. jQuery三——筛选方法、事件

    一.jquery常用筛选方法 以下为jquery的常用筛选方法: 代码示例如下: <!DOCTYPE html> <html lang="en"> < ...

  8. 图片小精灵 & 解决同时给一个元素设置背景问题 &jq登录注册切换

    图片小精灵,当有整张图片时可以通过图片小精灵设置图标. 例如 <!DOCTYPE html> <html> <head> <meta charset=&quo ...

  9. VC简单嵌入汇编

    转自:http://blog.csdn.net/arcsinsin/article/details/8126473 内嵌汇编的使用方法是: __asm {        语句 } 你可以把它插入程序中 ...

  10. Python tqdm show progress bar

    tqdm can help to show a smart progress bar, and it is very easy to use, just wrap any iterable with  ...