【洛谷P3388】(模板)割点
割点集合:一个顶点集合V,删除该集合的所有定点以及与这些顶点相连的边后,原图不连通,就称集合V为割点集合
点连通度:最小割点集合中的顶点数
边连通度:最小割边集合中的边数
割点:割点集合中唯一的一个元素
Tarjan求缩点:
一个点为缩点的条件:
1.该点为根,搜索树中有大于1个子树
2.该点u不为根,存在儿子v,dfn[u]>low[v]
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 100010
#define M 200010
int n,m,dfn[N],low[N];
int head[N],num,root,cnt;
bool gd[N];
inline int read(){
int x=; char c=getchar();
while(c<''||c>'') c=getchar();
while(''<=c&&c<='') { x=(x<<)+(x<<)+c-''; c=getchar(); }
return x;
}
struct NODE{
int to,next;
} e[M];
inline void add(int x,int y){
e[++num].to=y;
e[num].next=head[x];
head[x]=num;
}
void Tarjan(int u){
dfn[u]=low[u]=++cnt;
int tot=;
for(int i=head[u];i;i=e[i].next)
if(!dfn[e[i].to]){
tot++;
Tarjan(e[i].to);
low[u]=min(low[u],low[e[i].to]);
if((u==root&&tot>)||(u!=root&&dfn[u]<=low[e[i].to]))
gd[u]=;
}
else
low[u]=min(low[u],dfn[e[i].to]);
}
int main()
{
scanf("%d%d",&n,&m);
int x,y;
for(int i=;i<=m;i++){
x=read(); y=read();
add(x,y); add(y,x);
}
for(int i=;i<=n;i++)
if(!dfn[i]){
root=i; Tarjan(i);
}
int ans=;
for(int i=;i<=n;i++)
if(gd[i]) ans++;
printf("%d\n",ans);
for(int i=;i<=n;i++)
if(gd[i])
printf("%d ",i);
return ;
}
【洛谷P3388】(模板)割点的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷 P3388 【模板】割点(割顶)(Tarjan)
题目链接 https://www.luogu.org/problemnew/show/P3388 模板题 解题思路 什么是割点? 怎样求割点? dfn :即时间戳,一张图的dfs序(dfs遍历时出现的 ...
- 洛谷3388 tarjan割点
题目链接:https://www.luogu.com.cn/problem/P3388 tarjan算法果然牛逼,时间复杂度是O(|V|+|E|),所以1e4个结点2e5条边的图完全不在话下orz o ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
随机推荐
- TOJ 2733 棋盘游戏
Description 小 希和Gardon在玩一个游戏:对一个N*M的棋盘,在格子里放尽量多的一些国际象棋里面的“车”,并且使得他们不能互相攻击,这当然很简单,但是 Gardon限制了只有某些格子才 ...
- URAL —— 1255 & HDU 5100——Chessboard ——————【数学规律】
用 k × 1 的矩形覆盖 n × n 的正方形棋盘 用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,往往不能实现完全覆盖(比如,有时候 n × n 甚至根本就不是 k 的整倍数). 解题 ...
- 获取全球dns统计信息
# -*- coding:UTF-8 -*- import requests, time import json from bs4 import BeautifulSoup as bp t3 = ti ...
- [转]微信小程序开发(二)图片上传+服务端接收
本文转自:http://blog.csdn.net/sk719887916/article/details/54312573 文/YXJ 地址:http://blog.csdn.net/sk71988 ...
- fullpage的使用以及less, Sass的属性和JQuery自定义插件的声明和使用
使用fullpage的步骤 1 导入JQuery.js fullpage,js fullpage.css 2 组建网页布局,最外层id="fullpage" 单页class=& ...
- ICONIX
- SQL 表定时同步
1.创建存储过程 create proc [dbo].[sync_calendar] as truncate table dbo.CalendarEvents insert into Calendar ...
- Stage2--Python的数据类型
说在前面: Stage1-Stage4简单介绍一下Python语法,Stage5开始用python实现一些实际应用,语法的东西到处可以查看到,学习一门程序语言的最终目的是应用,而不是学习语法,语法本事 ...
- Aligning Plots in a Column作图列对齐
Plot[Sin[x], {x, 0, Pi}] Plot[10000 Sin[x], {x, 0, Pi}] 直接作图左边无法对齐,影响图的美观.可以使用左边界空格实现列对齐,代码如下: optio ...
- html 表格单元格的宽度和高度的设置
做网页的时候,经常会碰到表格宽度对不齐的问题.详细地看了html中表格标签table的高度和宽度设置的细节,现总结如下: 1.table中的width和height设置及其作用:table中设置的he ...