UVA1658 Admiral 拆点法解决结点容量(路径不能有公共点,容量为1的时候) 最小费用最大流
/**
题目:UVA1658 Admiral
链接:https://vjudge.net/problem/UVA-1658
题意:lrj入门经典P375
求从s到t的两条不相交(除了s和t外,没有公共点)的路径,使得权值和最小。 思路:拆点法。
除了s,t外。把其他点都拆成两个。 例如点A,拆成A和A'。A指向A'连一条容量为1,花费为0的边。
原来指向A的,仍然指向A点。
原来A指向其他点的,由A'指向它们。 最小费用最大流求流量为2时候的最小费用即可。 */
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
const int INF = 0x3f3f3f3f;
typedef long long LL;
const int N = ;
struct Edge{
int from, to, cap, flow, cost;
Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w){}
};
struct MCMF{
int n, m;
vector<Edge> edges;
vector<int> G[N];
int inq[N];
int d[N];
int p[N];
int a[N]; void init(int n){
this->n = n;
for(int i = ; i <= n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int cap,long long cost){
edges.push_back(Edge(from,to,cap,,cost));
edges.push_back(Edge(to,from,,,-cost));
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BellmanFord(int s,int t,int &flow,long long &cost){
for(int i = ; i <= n; i++) d[i] = INF;
memset(inq, , sizeof inq);
d[s] = ; inq[s] = ; p[s] = ; a[s] = INF; queue<int> Q;
Q.push(s);
while(!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = ;
for(int i = ; i < G[u].size(); i++){
Edge& e = edges[G[u][i]];
if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
d[e.to] = d[u]+e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u],e.cap-e.flow);
if(!inq[e.to]) {Q.push(e.to); inq[e.to] = ;}
}
}
}
if(d[t]==INF) return false;
flow += a[t];
cost += (long long)d[t]*(long long)a[t];
for(int u = t; u!=s; u = edges[p[u]].from){
edges[p[u]].flow+=a[t];
edges[p[u]^].flow-=a[t];
}
///流量为2时的最小费用。
if(flow==){
return false;
}
return true;
}
int MincostMaxflow(int s,int t,long long &cost){
int flow = ;
cost = ;
while(BellmanFord(s,t,flow,cost));
return flow;
}
};
vector<int>node[N];
int main()
{
int n, m;
while(scanf("%d%d",&n,&m)==)
{
int s = , t = n;
int u, v;
long long cost;
MCMF mcmf;
mcmf.init(n*);
for(int i = ; i <= n; i++) node[i].clear();
for(int i = ; i < m; i++){
scanf("%d%d%lld",&u,&v,&cost);
node[u].push_back(v);
node[u].push_back(cost);
}
int tot = n+;
for(int i = ; i < node[].size(); i+=){
mcmf.AddEdge(,node[][i],,node[][i+]);
}
for(int i = ; i < n; i++){///除了源点和汇点,其他拆点
int from = i, to = tot++;
mcmf.AddEdge(from,to,,);
for(int j = ; j < node[i].size(); j+=){
mcmf.AddEdge(to,node[i][j],,node[i][j+]);
}
}
for(int i = ; i < node[n].size(); i+=){
mcmf.AddEdge(n,node[n][i],,node[n][i+]);
}
mcmf.MincostMaxflow(s,t,cost);
printf("%lld\n",cost);
}
return ;
}
UVA1658 Admiral 拆点法解决结点容量(路径不能有公共点,容量为1的时候) 最小费用最大流的更多相关文章
- UVa 1658 - Admiral(最小费用最大流 + 拆点)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1658 海军上将(拆点法+最小费用限制流)
海军上将 紫书P375 这题我觉得有2个难点: 一是拆点,要有足够的想法才能把这题用网络流建模,并且知道如何拆点. 二是最小费用限制流,最小费用最大流我们都会,但如果限制流必须为一个值呢?比如这题限制 ...
- poj3422 拆点法x->x'建立两条边+最小费用最大流
/** 题目:poj3422 拆点法+最小费用最大流 链接:http://poj.org/problem?id=3422 题意:给定n*n的矩阵,含有元素值,初始sum=0.每次从最左上角开始出发,每 ...
- codevs1033 蚯蚓的游戏问题 裸最小费用最大流,注意要拆点
因为蚯蚓走过的路径不能重合,所以把每个点拆成两个点,容量赋为1,保证不会走过相同的点,再加超级源点(程序中为1)和一个辅助点(程序中为2)容量赋为k来控制蚯蚓的数量,最后汇集到一个超级汇点上.做一遍最 ...
- BZOJ-1070 修车 最小费用最大流+拆点+略坑建图
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3624 Solved: 1452 [Submit][Status] ...
- hdu 2686&&hdu 3376(拆点+构图+最小费用最大流)
Matrix Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- UVA - 1658 Admiral (最小费用最大流)
最短路对应费用,路径数量对应流量.为限制点经过次数,拆点为边.跑一次流量为2的最小费用最大流. 最小费用最大流和最大流EK算法是十分相似的,只是把找增广路的部分换成了求费用的最短路. #include ...
- hdu3488 / hdu3435 / hdu1853 最小费用最大流 圈 拆点
题目大意: 在一个有向图中,求经过所有点的最小圈. 思路: (如果是用二分图的完美匹配来做,那么直接上模版就好了).http://www.cnblogs.com/Potato-lover/p/3991 ...
- BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)
题意 题目链接 Sol 看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq 首先冷静思考一下:最小路径覆盖 = \(n - \text{二分图最大匹配数}\) 为什么呢?首先最坏情况下是用\(n ...
随机推荐
- ios中将事件同步到系统日历
//获取日历事件 EKEventStore* eventStore = [[EKEventStorealloc] init]; NSDate* ssdate = [NSDatedateWithTime ...
- [转] C++ try catch() throw 异常处理
原文地址 其它很多程序员一样,本书的主人公阿愚也是在初学C++时,在C++的sample代码中与异常处理的编程方法初次邂逅的,如下: // Normal program statements . ...
- PostgreSQL配置文件--资源使用(除WAL外)
2 资源使用(除WAL外) RESOURCE USAGE (except for WAL) 2.1 内存 Memory 2.1.1 shared_buffers 数字型 默认: shared_buff ...
- mongodb权限管理(转)
Mongodb 预定义角色 Mongodb 中预定义了一些角色,把这些角色赋予给适当的用户上,用户就只能进行角色范围内的操作. 数据库用户角色 (所有数据库都有) read 用户可以读取当前数据库的数 ...
- Python 的 LEGB 规则(转载)
转载:https://mp.weixin.qq.com/s?timestamp=1498528588&src=3&ver=1&signature=DfFeOFPXy44ObCM ...
- Kubernetes用户指南(一)--快速开始、使用k8s配置文件
一.快速开始 1.启动一个简单的容器. 一旦在container中打包好应用并将其commit为image之后,你就可以将其部署在k8s集群上. 一个简单的nginx服务器例子: 先决条件:你需要拥有 ...
- PHPer 应聘见闻
关于我自己 我,很普通的一个开发,88年出生在皖南山区.从小学到高中毕业都没想过自己会从事软件开发,高考的误打误撞,被某普通二本院校收编.大学浑浑噩噩,对软件开发也没多大的兴趣,11年毕业后来杭,面试 ...
- hdu5289 Assignment (区间查询最大值最小值,st算法...)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5289 题意:给定长度为n的序列a和一个整数K,找出最大值和最小值的差值小于K的区间.输出满足条件的区间的个 ...
- Django——20141014深入理解Django HttpRequest HttpResponse的类和实例
深入理解Django HttpRequest HttpResponse的类和实例 了解META选项 了解中间件 理清所有模板传输模板变量的方式,并作出选择 Django模板系统:如何利用Django模 ...
- JavaScript完整性检查
1.7个“坑” <!DOCTYPE html> <html lang="zh"> <head> <meta charset="U ...