题意:有一棵树,你要按顺序在树上走$m$次,每次从$u_i$到$v_i$或从$v_i$到$u_i$,走完后,如果一条边被单向经过,那么它贡献$1$的价值,如果一条边被双向经过,那么它贡献$2$的价值,给出所有的$(u_i,v_i)$,你要安排每次走路的方向以最大化价值

设边$i$被经过的次数为$c_i$,容易看出答案的上界是$\sum\min(c_i,2)$,下面我们构造性地说明这个上界总可以被达到

如果$n=1$,树中没有边,接下来考虑$n\gt1$

任选一个叶子$u$,设$e$为连接它的唯一一边,$v$为$e$的另一端点

如果$c_e=0$,直接删掉$u$,这对答案没有影响

如果$c_e=1$,我们也可以删掉$u$,只不过经过$u$的那条路径的端点要缩至$v$,此时$e$贡献的价值为$1$

如果$c_e\geq2$,不停地选取两条路径$(u,a)$和$(u,b)$,那么我们可以把$(u,a)$和$(u,b)$换为$(a,b)$,如果$(a,b)$最终被决定为$a\rightarrow b$,那么还原过来就是$a\rightarrow u,u\rightarrow b$,否则是$b\rightarrow u,u\rightarrow a$,设$(u,c)$为$(u,a)$和$(u,b)$的交,那么$(u,c)$上的每一条边都一定能被双向经过,所以$e$贡献的价值为$2$,重复这个过程直至$c_e\lt2$,这样就构造性地说明了我们可以达到上界

我写得比较丑,毕竟是STL不用钱系列...

#include<stdio.h>
#include<string.h>
#include<vector>
using namespace std;
int h[2010],nex[4010],to[4010],dep[2010],fa[2010],fav[2010],M;
void add(int a,int b){
	M++;
	to[M]=b;
	nex[M]=h[a];
	h[a]=M;
}
void dfs(int x){
	dep[x]=dep[fa[x]]+1;
	for(int i=h[x];i;i=nex[i]){
		if(to[i]!=fa[x]){
			fa[to[i]]=x;
			dfs(to[i]);
		}
	}
}
void col(int x,int y){
	if(dep[x]<dep[y])swap(x,y);
	while(dep[x]>dep[y]){
		fav[x]++;
		x=fa[x];
	}
	while(x!=y){
		fav[x]++;
		fav[y]++;
		x=fa[x];
		y=fa[y];
	}
}
struct rt{
	int x,y;
	rt(int a=0,int b=0){x=a;y=b;}
};
bool operator==(rt a,rt b){return a.x==b.x&&a.y==b.y;}
int d[2010],n;
vector<rt>solve(vector<rt>v){
	if(v.size()==0)return v;
	int x,u,i;
	for(x=1;x<=n;x++){
		if(d[x]==1)break;
	}
	if(x>n)return v;
	for(i=h[x];i;i=nex[i]){
		if(d[to[i]]){
			u=to[i];
			break;
		}
	}
	d[x]--;
	d[u]--;
	vector<rt>lx,nv;
	vector<int>id;
	int pos[2010];
	memset(pos,-1,sizeof(pos));
	for(i=0;i<(int)v.size();i++){
		if(v[i].x==x||v[i].y==x){
			lx.push_back(v[i]);
			id.push_back(i);
		}else{
			nv.push_back(v[i]);
			pos[i]=nv.size()-1;
		}
	}
	if(lx.size()==0)return solve(v);
	for(i=0;i+1<(int)lx.size();i+=2){
		if(lx[i].y==x)swap(lx[i].x,lx[i].y);
		if(lx[i+1].y==x)swap(lx[i+1].x,lx[i+1].y);
		if(lx[i]==lx[i+1]){
			if(v[id[i]]==v[id[i+1]])swap(v[id[i]].x,v[id[i]].y);
			continue;
		}
		nv.push_back(rt(lx[i].y,lx[i+1].y));
		pos[id[i]]=pos[id[i+1]]=nv.size()-1;
	}
	if(lx.size()&1){
		if(lx[lx.size()-1].y==x)swap(lx[lx.size()-1].x,lx[lx.size()-1].y);
		if(lx[lx.size()-1].y!=u){
			nv.push_back(rt(u,lx[lx.size()-1].y));
			pos[id[lx.size()-1]]=nv.size()-1;
		}
	}
	nv=solve(nv);
	for(i=0;i<(int)v.size();i++){
		if(pos[i]!=-1&&!(v[i].x==nv[pos[i]].x||v[i].y==nv[pos[i]].y))swap(v[i].x,v[i].y);
	}
	return v;
}
vector<rt>v;
int main(){
	int m,i,x,y,ans;
	scanf("%d%d",&n,&m);
	for(i=1;i<n;i++){
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
		d[x]++;
		d[y]++;
	}
	dfs(1);
	for(i=1;i<=m;i++){
		scanf("%d%d",&x,&y);
		v.push_back(rt(x,y));
		col(x,y);
	}
	v=solve(v);
	ans=0;
	for(i=2;i<=n;i++)ans+=min(2,fav[i]);
	printf("%d\n",ans);
	for(rt t:v)printf("%d %d\n",t.x,t.y);
}

[AGC025E]Walking on a Tree的更多相关文章

  1. K-D Tree

    这篇随笔是对Wikipedia上k-d tree词条的摘录, 我认为解释得相当生动详细, 是一篇不可多得的好文. Overview A \(k\)-d tree (short for \(k\)-di ...

  2. 使控件具有 Tilt 效果

    步骤1:添加类: /* Copyright (c) 2010 Microsoft Corporation. All rights reserved. Use of this sample source ...

  3. WinPhone学习笔记(四)——磁贴

    对每个Windows Phone的使用者来说,给他们的第一印象就是大大小小的磁贴——Metro,本篇介绍的是Windows Phone的磁贴,提到的有开始菜单的磁贴,也有在App里面的磁贴. 开始菜单 ...

  4. java基础(1)-比较jdk5,jdk6,jdk7的新特性

    jdk8已经出来好长时间了,这里自己学习时简单总结的jdk5,jdk6和jdk7的新特性:本文提纲: 一.jdk5的新特性 二.jdk6的新特性 三.jdk7的新特性 一.jdk5的新特性 首先简单介 ...

  5. 立即执行函数(IIFE)的理解与运用

    作为JavaScript的常用语法,立即执行函数IIFE(Immediately-Invoked Function Expression)是值得我们认真去学习探究的. 一.创建函数的两种方式 我们先从 ...

  6. An NIO.2 primer--reference

    Part 1: The asynchronous channel APIs The More New I/O APIs for the Java™ Platform (NIO.2) is one of ...

  7. (转载)XML Tutorial for iOS: How To Choose The Best XML Parser for Your iPhone Project

    There are a lot of options when it comes to parsing XML on the iPhone. The iPhone SDK comes with two ...

  8. Windows Phone 8 ControlTiltEffect

    /* Copyright (c) 2010 Microsoft Corporation. All rights reserved. Use of this sample source code is ...

  9. jQuery的使用及关于框架造型(转)

    Introduction 正如jQuery所宣称的一样,Write Less, Do More.很多时候我们喜欢用它来解决问题.但增加一个库必然意味着更大的网络负担,意味着更高的页面初始载入时间.并且 ...

随机推荐

  1. 湖南大学第十四届ACM程序设计新生杯 E.Easy Problem

    E.Easy Problem Description: Zghh likes number, but he doesn't like writing problem description. So h ...

  2. Spring随笔 —— IOC配置的三种不同方式简介

    在spring framework中,IOC的配置是最基础的部分,常见的配置方式有基于xml文件和基于注解的配置方式.除了这两种配置方式之外,今天这里再介绍另一种配置方式,先用小demo重温下我们熟悉 ...

  3. SQL 学习小笔记

    1.FOUND_ROWS() 题目: ,; 在上边sql中使用什么选项可以使 SELECT FOUND_ROWS()忽略LIMIT子句,返回总数? *答案* : SQL_CALC_FOUND_ROWS ...

  4. SVN 服务器安装及配置(WIN7)

    软件安装包 客户端: 服务端: 安装服务端 不整合 Apache 服务器可以忽略此选项. 安装程序会自动在path下配置好环境变量:D:\Subversion\bin; 查看是否安装成功: C:\Us ...

  5. Dozer数据对象转换神器

    Dozer数据对象转换神器  

  6. 图片和base64编码字符串 互相转换,图片和byte数组互相转换

    图片和base64编码字符串 互相转换 import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder; import java.io.*; ...

  7. oracle导入和导出和授权

    导入数据库: imp demo@orcl file=d:/bak_1023.dmp full=y ignore=y 导出数据库: @orcl file=d:/bak_1023.dmpexp yhtj/ ...

  8. 图论:Dinic算法

    解决最大流问题我搜到了一堆的算法:EK算法.FF算法.Dinic算法.SAP算法.ISAP算法 然而并没有什么鸟用 掌握最常见的Dinic就够了,据说极限优化的ISAP比Dinic更快一些..我当不知 ...

  9. bzoj 4999: This Problem Is Too Simple!

    Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x&l ...

  10. 【比赛】百度之星2017 初赛Round A

    第一题 题意:给定多组数据P,每次询问P进制下,有多少数字B满足条件:只要数位之和是B的倍数,该数字就是B的倍数. 题解:此题是参考10进制下3和9倍数的特殊性质. 对于10进制,ab=10*a+b= ...