【线性筛】【筛法求素数】【素数判定】URAL - 2102 - Michael and Cryptography
暴力搞肯定不行,因此我们从小到大枚举素数,用n去试除,每次除尽,如果已经超过20,肯定是no。如果当前枚举到的素数的(20-已经找到的质因子个数)次方>剩下的n,肯定也是no。再加一个关键的优化,如果剩下的次数是1了,就直接判定剩下的n是否是素数。这样可以保证次方>=2,将我们需要枚举的素数限制在200w以内,就可做了。线性筛在这题虽然不必要,但是可以当个板子存下来。
Input
Output
Example
input | output |
---|---|
2 |
No |
1048576 |
Yes |
10000000000 |
Yes |
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
#define MAXP 2000000
#define EPS 0.00000001
ll n;
bool isNotPrime[MAXP+10];
int num_prime,prime[MAXP+10];
void shai()
{
for(long i = 2 ; i < MAXP ; i ++)
{
if(! isNotPrime[i])
prime[num_prime ++]=i;
for(long j = 0 ; j < num_prime && i * prime[j] < MAXP ; j ++)
{
isNotPrime[i * prime[j]] = 1;
if( !(i % prime[j]))
break;
}
}
}
bool is_prime(ll x)
{
if(x==1ll)
return 0;
for(ll i=2;i*i<=x;++i)
if(x%i==0)
return 0;
return 1;
}
int m=20;
int main()
{
scanf("%I64d",&n);
shai();
for(int i=0;i<num_prime;++i)
{
if((double)m*log((double)prime[i])-log((double)n)>EPS)
{
puts("No");
return 0;
}
while(n%(ll)prime[i]==0)
{
n/=(ll)prime[i];
--m;
}
if(m==0 && n==1)
{
puts("Yes");
return 0;
}
if(m<0 || (m==0 && n>1))
{
puts("No");
return 0;
}
if(n>1 && m==1)
{
if(is_prime(n))
{
puts("Yes");
return 0;
}
else
{
puts("No");
return 0;
}
}
}
return 0;
}
【线性筛】【筛法求素数】【素数判定】URAL - 2102 - Michael and Cryptography的更多相关文章
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- 2018.08.29 NOIP模拟 pmatrix(线性筛)
[问题描述] 根据哥德巴赫猜想(每个不小于 6 的偶数都可以表示为两个奇素数之和),定义 哥德巴赫矩阵 A 如下:对于正整数对(i,j),若 i+j 为偶数且 i,j 均为奇素数,则 Ai,j = 1 ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- <转载>一般筛法和快速线性筛法求素数
素数总是一个比较常涉及到的内容,掌握求素数的方法是一项基本功. 基本原则就是题目如果只需要判断少量数字是否为素数,直接枚举因子2 ..N^(0.5) ,看看能否整除N. 如果需要判断的次数较多,则先用 ...
- 欧拉筛法模板and 洛谷 P3383 【模板】线性筛素数(包括清北的一些方法)
题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入格式 第一行包含两个正整数N.M,分别表示查询的范围和查询的个数. 接下来M行每行包含一个不小于1 ...
- 欧拉筛法模板&&P3383 【模板】线性筛素数
我们先来看欧拉筛法 •为什么叫欧拉筛呢?这可能是跟欧拉有关 •但是为什么叫线性筛呢?因为它的复杂度是线性的,也就是O(n),我们直接来看代码 #include<cstdio> #inc ...
- Algorithm --> 筛法求素数
一般的线性筛法 genPrime和genPrime2是筛法求素数的两种实现,一个思路,表示方法不同而已. #include<iostream> #include<math.h> ...
- [Luogu]A%BProblem——线性筛素数与前缀和
题目描述 题目背景 题目名称是吸引你点进来的[你怎么知道的] 实际上该题还是很水的[有种不祥的预感..] 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m接下来n行, ...
- 全网一定不是最好懂的C++线性筛素数
Part 0:概念 先给几个概念(很重要): 合数:如果\(xy=z\text{且}x,y\text{为正整数}\),我们就说\(x,y\text{是}z\text{的合数}\) 素数:如果数\(a\ ...
随机推荐
- 解决Vue方法中setTimeout改变变量的值无效
把data里的变量继承过来重新封装一下 let that = this; this.rightAnswer = false; setTimeout(function() { that.rightAns ...
- Ubuntu14.04 换源 阿里云
sudo cp /etc/apt/sources.list /etc/apt/sources.list_backup sudo vim /etc/apt/sources.list sudo apt-g ...
- java 保护内存操作的方法
1.与c++不同,在java中,没有通过使用强制转换指针类型或者通过进行指针运算直接访问内存的方法.在java中使用对象时,需要严格地遵守类型规则.如果存在一个Mountain类对象的引用(类似于c+ ...
- shell正则表达式(1)
一.什么是正则 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. 二.grep 1.参数 -n :显示行号 -o : ...
- bzoj1861 书架 splay版
单点插入删除以及求前缀 #include<cstdio> #include<cstring> #include<algorithm> using namespace ...
- centos 下构建lamp环境
构建准备: 1.配置防火墙,开启80端口.3306端口 vi /etc/sysconfig/iptables -A INPUT -m state --state NEW -m tcp -p tcp - ...
- 地震(quake)
地震 题目描述 一场地震毁了 Farmer John 的整个农场.他是个有恒心的人,决定重建农场.在重建了所有 n(1<=n<=400)块田野后,他意识到还得修路将它们连起来.完工后,任两 ...
- Mysql TEXT类型长度
BLOBTEXT一个BLOB或TEXT列,最大长度为65535(2^16-1)个字符. MEDIUMBLOBMEDIUMTEXT一个BLOB或TEXT列,最大长度为16777215(2^24-1)个字 ...
- bzoj 1901 线段树套平衡树+二分答案查询
我们就建一颗线段树,线段树的每一个节点都是一颗平衡树,对于每个询问来说,我们就二分答案, 查询每个二分到的mid在这个区间里的rank,然后就行了 /************************* ...
- django2.0的reverse
导入: 官方文档地址:https://yiyibooks.cn/xx/Django_1.11.6/topics/http/urls.html from django.urls import rever ...