题目描述

给出n个结点以及每个点初始时对应的权值wi。起始时点与点之间没有连边。有3类操作: 1、bridge A B:询问结点A与结点B是否连通。如果是则输出“no”。否则输出“yes”,并且在结点A和结点B之间连一条无向边。 2、penguins A X:将结点A对应的权值wA修改为X。 3、excursion A B:如果结点A和结点B不连通,则输出“impossible”。否则输出结点A到结点B的路径上的点对应的权值的和。给出q个操作,要求在线处理所有操作。数据范围:1<=n<=30000, 1<=q<=300000, 0<=wi<=1000。

输入

第一行包含一个整数n(1<=n<=30000),表示节点的数目。第二行包含n个整数,第i个整数表示第i个节点初始时对应的权值。第三行包含一个整数q(1<=n<=300000),表示操作的数目。以下q行,每行包含一个操作,操作的类别见题目描述。任意时刻每个节点对应的权值都是1到1000的整数。

输出

输出所有bridge操作和excursion操作对应的输出,每个一行。

样例输入

5
4 2 4 5 6
10
excursion 1 1
excursion 1 2
bridge 1 2
excursion 1 2
bridge 3 4
bridge 3 5
excursion 4 5
bridge 1 3
excursion 2 4
excursion 2 5

样例输出

4
impossible
yes
6
yes
yes
15
yes
15
16


题解

LCT,没有删边操作

坑点在于bridge操作时连通输出no,不连通输出yes(估计是翻译问题)

#include <cstdio>
#include <algorithm>
#define N 30010
#define lson c[0][x]
#define rson c[1][x]
using namespace std;
int fa[N] , c[2][N] , w[N] , sum[N] , rev[N];
char str[15];
void pushup(int x)
{
sum[x] = sum[lson] + sum[rson] + w[x];
}
void pushdown(int x)
{
if(rev[x])
{
swap(c[0][lson] , c[1][lson]);
swap(c[0][rson] , c[1][rson]);
rev[lson] ^= 1 , rev[rson] ^= 1;
rev[x] = 0;
}
}
bool isroot(int x)
{
return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , rson = t , pushup(x) , t = x , x = fa[x];
}
void makeroot(int x)
{
access(x) , splay(x);
swap(lson , rson) , rev[x] ^= 1;
}
int find(int x)
{
access(x) , splay(x);
while(lson) pushdown(x) , x = lson;
return x;
}
void link(int x , int y)
{
makeroot(x) , fa[x] = y;
}
void split(int x , int y)
{
makeroot(y) , access(x) , splay(x);
}
int main()
{
int n , m , i , x , y;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , sum[i] = w[i];
scanf("%d" , &m);
while(m -- )
{
scanf("%s%d%d" , str , &x , &y);
if(str[0] == 'b')
{
if(find(x) == find(y)) printf("no\n");
else printf("yes\n") , link(x , y);
}
else if(str[0] == 'p') split(x , x) , w[x] = sum[x] = y;
else
{
if(find(x) == find(y)) split(x , y) , printf("%d\n" , sum[x]);
else printf("impossible\n");
}
}
return 0;
}

【bzoj1180】[CROATIAN2009]OTOCI LCT的更多相关文章

  1. 【BZOJ1180】: [CROATIAN2009]OTOCI & 2843: 极地旅行社 LCT

    竟然卡了我....忘记在push_down先下传父亲的信息了....还有splay里for():卡了我10min,但是双倍经验还是挺爽的,什么都不用改. 感觉做的全是模板题,太水啦,不能这么水了... ...

  2. 【bzoj4229】选择 离线+LCT

    题目描述 现在,我想知道自己是否还有选择. 给定n个点m条边的无向图以及顺序发生的q个事件. 每个事件都属于下面两种之一: 1.删除某一条图上仍存在的边 2.询问是否存在两条边不相交的路径可以从点u出 ...

  3. 【bzoj4998】星球联盟 LCT+并查集

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两个 ...

  4. 【BZOJ3779】重组病毒 LCT+DFS序

    [BZOJ3779]重组病毒 Description 黑客们通过对已有的病毒反编译,将许多不同的病毒重组,并重新编译出了新型的重组病毒.这种病毒的繁殖和变异能力极强.为了阻止这种病毒传播,某安全机构策 ...

  5. 【BZOJ3091】城市旅行 LCT

    [BZOJ3091]城市旅行 Description Input Output Sample Input 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 ...

  6. BZOJ 1180: [CROATIAN2009]OTOCI [LCT]

    1180: [CROATIAN2009]OTOCI Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 961  Solved: 594[Submit][S ...

  7. 【BZOJ】2631: tree LCT

    [题意]给定n个点的树,每个点初始权值为1,m次操作:1.x到y的点加值,2.断一条边并连一条边,保证仍是树,3.x到y的点乘值,4.x到y的点权值和取模.n,m<=10^5. [算法]Link ...

  8. BZOJ1180 [CROATIAN2009]OTOCI LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1180 本题和BZOJ2843一样. BZOJ2843 极地旅行社 LCT 题意概括 有n座岛 每座 ...

  9. BZOJ2843极地旅行社&BZOJ1180[CROATIAN2009]OTOCI——LCT

    题目描述 给出n个结点以及每个点初始时对应的权值wi.起始时点与点之间没有连边.有3类操作:  1.bridge A B:询问结点A与结点B是否连通. 如果是则输出“no”.否则输出“yes”,并且在 ...

随机推荐

  1. php mysql 计算经纬之间距离 范围内筛选

    <?php /** * 根据经纬度和半径计算出范围 * @param string $lat 纬度 * @param String $lng 经度 * @param float $radius ...

  2. 谈谈toLocaleString()

    如何理解toLocaleString()? toLocaleString()就是把数组转换为本地字符串.首先调用每个数组元素的toLocaleString()方法,然后使用地区特定的分隔符把生成的字符 ...

  3. js-scroll判断页面是向上滚动还是向下滚动

    原理:那当前的scrollTop和之前的scrollTop对比 如果变大了,表示向下滚动(scrollTop值变大): 如果变小了,表示向上滚动(scrollTop值变小). 方法一:js代码: $( ...

  4. web开发学习路线

    第一阶段: HTML+CSS: HTML进阶.CSS进阶.div+css布局.HTML+css整站开发. JavaScript基础: Js基础教程.js内置对象常用方法.常见DOM树操作大全.ECMA ...

  5. Apache Maven(三):POM

    什么是 POM? POM (Project Object Model) 项目对象模型.它是一个XML文件,其中包含有关Maven用于构建项目的项目和配置细节的信息.它包含大多数项目的默认值.例如,构建 ...

  6. C# 用HttpWebRequest模拟一个虚假的IP伪造ip

    有人会说:IP验证是在TCP层完成的,不是HTTP层完成的,如果伪造IP的话可能连TCP的三次握手都完不成.我这里说的不是完全意义的伪造.如果你使用透明代理上网,那么在透明代理发送给服务器端的HTTP ...

  7. PHP-提升PHP性能的几个扩展

    下面介绍的几个扩展原理都是对OPCODE进行缓存(Opcode缓存原理查看http://www.cnblogs.com/JohnABC/p/4531029.html): Zend Opcache: 由 ...

  8. 微信小程序关于tabbar点击切换数据不刷新问题

    微信小程序中经常遇到的需求就是我提交了一个表单或者进行了一个操作,需要在我的个人中心页面中实时显示出来,但是小程序中的tabbar切换类似于tab切换 并不会进行页面刷新请求 所以总是会造成一些数据更 ...

  9. Linux 新建定时任务

    Linux 新建定时任务: 1.查看指定用户列表: crontab -u apache -l 2.切换至对应用户,这里是apache su apache 3.新增定时任务: crontab -e 写入 ...

  10. Scala语法(二)

    (1)类,对象 //定义类(属性.方法),实例化对象 class counter{ *//主构造器 class counter(name:String,mode:Int){ ... } 实例化:val ...