将未建立贸易关系看成连一条边,那么这显然是个二分图。最大城市群即最大独立集,也即n-最大匹配。现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中。

  首先范围有点大,当然是跑个dinic,转化成最大流。会使最大流减少的边相当于可能在最小割中的边,因为删掉它就相当于无代价的割掉了一条边。那么用曾经看到过的结论就可以了:当且仅当该边满流且残余网络(包括反向边)中该边两端点处于不同SCC时,该边可能在最小割中。不太会证。于是tarjan一发就可以了。注意不要把开始给的图和网络流建图搞混。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10010
#define M 300010
#define S 0
#define T 10001
char getc(){char c=getchar();while (c==||c==||c==) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p[N],t=-,color[N],ans;
int d[N],q[N],cur[N];
struct data{int to,nxt,cap,flow;
}edge[M<<];
struct data2
{
int x,y;
bool operator <(const data2&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
}v[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
void paint(int k)
{
for (int i=p[k];~i;i=edge[i].nxt)
if (color[edge[i].to]==-)
{
color[edge[i].to]=color[k]^;
paint(edge[i].to);
}
}
bool bfs()
{
int head=,tail=;q[]=S;
memset(d,,sizeof(d));d[S]=;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
int work(int k,int f)
{
if (k==T) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
work(S,N);
}
}
namespace newgraph
{
int dfn[N]={},low[N]={},stk[N],id[N],top=,cnt=,tot=,t=,p[N]={},ans=;
bool flag[N];
struct data{int to,nxt;}edge[M];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void tarjan(int k)
{
dfn[k]=low[k]=++cnt;
stk[++top]=k;flag[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (!dfn[edge[i].to]) tarjan(edge[i].to),low[k]=min(low[k],low[edge[i].to]);
else if (flag[edge[i].to]) low[k]=min(low[k],dfn[edge[i].to]);
if (dfn[k]==low[k])
{
tot++;
while (stk[top]!=k)
{
flag[stk[top]]=;
id[stk[top]]=tot;
top--;
}
flag[k]=;id[k]=tot;top--;
}
}
void work()
{
for (int i=;i<=n;i++)
if (!dfn[i]) tarjan(i);
if (!dfn[T]) tarjan(T);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read();
addedge(x,y,);
}
memset(color,,sizeof(color));
for (int i=;i<=n;i++) if (color[i]==-) color[i]=,paint(i);
for (int i=;i<=t;i++) edge[i].cap=color[edge[i^].to];
for (int i=;i<=n;i++)
if (color[i]) addedge(S,i,);
else addedge(i,T,);
dinic();
for (int i=;i<=t;i++)
if (edge[i].flow<edge[i].cap) newgraph::addedge(edge[i^].to,edge[i].to);
newgraph::work();
for (int i=;i<=t;i++)
if (edge[i].cap==&&edge[i].flow==edge[i].cap&&edge[i^].to!=S&&edge[i].to!=T&&newgraph::id[edge[i^].to]!=newgraph::id[edge[i].to])
ans++,v[ans].x=min(edge[i^].to,edge[i].to),v[ans].y=max(edge[i^].to,edge[i].to);
sort(v+,v+ans+);
cout<<ans<<endl;
for (int i=;i<=ans;i++) printf("%d %d\n",v[i].x,v[i].y);
return ;
}

Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)的更多相关文章

  1. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

  2. HAOI2017 新型城市化 二分图的最大独立集+最大流+强连通缩点

    题目链接(洛谷):https://www.luogu.org/problemnew/show/P3731 题意概述:给出一张二分图,询问删掉哪些边之后可以使这张二分图的最大独立集变大.N<=10 ...

  3. UESTC 898 方老师和缘分 --二分图匹配+强连通分量

    这题原来以为是某种匹配问题,后来好像说是强连通的问题. 做法:建图,每个方老师和它想要的缘分之间连一条有向边,然后,在给出的初始匹配中反向建边,即如果第i个方老师现在找到的是缘分u,则建边u-> ...

  4. 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)

    [Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...

  5. 求去掉一条边使最小割变小 HAOI2017 新型城市化

    先求最小割,然后对残量网络跑Tarjan.对于所有满流的边,若其两端点不在同一个SCC中,则这条边是满足条件的. 证明见 来源:HAOI2017 新型城市化

  6. 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量

    Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...

  7. LOJ2276 [HAOI2017] 新型城市化 【二分图匹配】【tarjan】

    题目分析: 这题出的好! 首先问题肯定是二分图的最大独立集,如果删去某条匹配边之后独立集是否会变大. 跑出最大流之后流满的边就是匹配边. 如果一个匹配边的两个端点在一个强连通分量里,那这条边删掉之后我 ...

  8. 洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】

    我到底怎么建的图为啥要开这么大的数组啊?! 神题神题,本来以为图论出不出什么花来了. 首先要理解'团'的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘. 所以关于团一般都是NP问题,只有二分 ...

  9. hdu 4685 二分匹配+强连通分量

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 题解: 这一题是poj 1904的加强版,poj 1904王子和公主的人数是一样多的,并且给出 ...

随机推荐

  1. python学习之对象的三大特性

    在面向对象程序设计中,对象可以看做是数据(特性)以及由一系列可以存取.操作这些数据的方法所组成的集合.编写代码时,我们可以将所有功能都写在一个文件里,这样也是可行的,但是这样不利于代码的维护,你总不希 ...

  2. 自定义vim配置文件vimrc,用于c/c++编程

    vim作为Linux下广受赞誉的代码编辑器,其独特的纯命令行操作模式可以很大程度上方便编程工作,通过自定义vim配置文件可以实现对vim功能的个性化设置. vim配置文件一般有两份,属于root的/e ...

  3. array_x

    import java.util.*; public class array_x { public static void main(String args[]) { int a[][]={{2,4, ...

  4. CentOS(Linux)安装KETTLE教程 并配置执行定时任务

    1,首先是安装jdk,并设置环境变量 采用yum安装可不设置环境变量 2,下载kettle https://sourceforge.net/projects/pentaho/files/Data%20 ...

  5. 最小生成树算法 1.Prim算法

    最小生成树(MST):一个有N个点的图,边一定是大于等于N-1条边的.在这些边中选择N-1条出来,连接所有N个点.这N-1条边的边权之和是所有方案中最小的. Prim算法的时间复杂度时O(n^2)的, ...

  6. 3155: Preprefix sum

    3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...

  7. 最火的.NET开源项目[转]

    综合类 微软企业库 微软官方出品,是为了协助开发商解决企业级应用开发过程中所面临的一系列共性的问题, 如安全(Security).日志(Logging).数据访问(Data Access).配置管理( ...

  8. Android adb shell启动应用程序的方法

    在Android中,除了从界面上启动程序之外,还可以从命令行启动程序,使用的是命令行工具am. usage: am [subcommand] [options] start an Activity: ...

  9. 「日常训练」 Mike and Frog (CFR305D2C)

    题意与分析 (Codeforces 548C) 我开始以为是一条数学题,死活不知道怎么做,无奈看题解,才知这是一条暴力,思维江化了- - 题意大概是这样的: 两个东西的初始高度分别为h1,h2&quo ...

  10. xshell、xftp免费版下载方法

    第一步:进入官站 https://www.netsarang.com/   第二步:选中Free License