将未建立贸易关系看成连一条边,那么这显然是个二分图。最大城市群即最大独立集,也即n-最大匹配。现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中。

  首先范围有点大,当然是跑个dinic,转化成最大流。会使最大流减少的边相当于可能在最小割中的边,因为删掉它就相当于无代价的割掉了一条边。那么用曾经看到过的结论就可以了:当且仅当该边满流且残余网络(包括反向边)中该边两端点处于不同SCC时,该边可能在最小割中。不太会证。于是tarjan一发就可以了。注意不要把开始给的图和网络流建图搞混。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10010
#define M 300010
#define S 0
#define T 10001
char getc(){char c=getchar();while (c==||c==||c==) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p[N],t=-,color[N],ans;
int d[N],q[N],cur[N];
struct data{int to,nxt,cap,flow;
}edge[M<<];
struct data2
{
int x,y;
bool operator <(const data2&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
}v[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
void paint(int k)
{
for (int i=p[k];~i;i=edge[i].nxt)
if (color[edge[i].to]==-)
{
color[edge[i].to]=color[k]^;
paint(edge[i].to);
}
}
bool bfs()
{
int head=,tail=;q[]=S;
memset(d,,sizeof(d));d[S]=;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
int work(int k,int f)
{
if (k==T) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
work(S,N);
}
}
namespace newgraph
{
int dfn[N]={},low[N]={},stk[N],id[N],top=,cnt=,tot=,t=,p[N]={},ans=;
bool flag[N];
struct data{int to,nxt;}edge[M];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void tarjan(int k)
{
dfn[k]=low[k]=++cnt;
stk[++top]=k;flag[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (!dfn[edge[i].to]) tarjan(edge[i].to),low[k]=min(low[k],low[edge[i].to]);
else if (flag[edge[i].to]) low[k]=min(low[k],dfn[edge[i].to]);
if (dfn[k]==low[k])
{
tot++;
while (stk[top]!=k)
{
flag[stk[top]]=;
id[stk[top]]=tot;
top--;
}
flag[k]=;id[k]=tot;top--;
}
}
void work()
{
for (int i=;i<=n;i++)
if (!dfn[i]) tarjan(i);
if (!dfn[T]) tarjan(T);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read();
addedge(x,y,);
}
memset(color,,sizeof(color));
for (int i=;i<=n;i++) if (color[i]==-) color[i]=,paint(i);
for (int i=;i<=t;i++) edge[i].cap=color[edge[i^].to];
for (int i=;i<=n;i++)
if (color[i]) addedge(S,i,);
else addedge(i,T,);
dinic();
for (int i=;i<=t;i++)
if (edge[i].flow<edge[i].cap) newgraph::addedge(edge[i^].to,edge[i].to);
newgraph::work();
for (int i=;i<=t;i++)
if (edge[i].cap==&&edge[i].flow==edge[i].cap&&edge[i^].to!=S&&edge[i].to!=T&&newgraph::id[edge[i^].to]!=newgraph::id[edge[i].to])
ans++,v[ans].x=min(edge[i^].to,edge[i].to),v[ans].y=max(edge[i^].to,edge[i].to);
sort(v+,v+ans+);
cout<<ans<<endl;
for (int i=;i<=ans;i++) printf("%d %d\n",v[i].x,v[i].y);
return ;
}

Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)的更多相关文章

  1. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

  2. HAOI2017 新型城市化 二分图的最大独立集+最大流+强连通缩点

    题目链接(洛谷):https://www.luogu.org/problemnew/show/P3731 题意概述:给出一张二分图,询问删掉哪些边之后可以使这张二分图的最大独立集变大.N<=10 ...

  3. UESTC 898 方老师和缘分 --二分图匹配+强连通分量

    这题原来以为是某种匹配问题,后来好像说是强连通的问题. 做法:建图,每个方老师和它想要的缘分之间连一条有向边,然后,在给出的初始匹配中反向建边,即如果第i个方老师现在找到的是缘分u,则建边u-> ...

  4. 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)

    [Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...

  5. 求去掉一条边使最小割变小 HAOI2017 新型城市化

    先求最小割,然后对残量网络跑Tarjan.对于所有满流的边,若其两端点不在同一个SCC中,则这条边是满足条件的. 证明见 来源:HAOI2017 新型城市化

  6. 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量

    Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...

  7. LOJ2276 [HAOI2017] 新型城市化 【二分图匹配】【tarjan】

    题目分析: 这题出的好! 首先问题肯定是二分图的最大独立集,如果删去某条匹配边之后独立集是否会变大. 跑出最大流之后流满的边就是匹配边. 如果一个匹配边的两个端点在一个强连通分量里,那这条边删掉之后我 ...

  8. 洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】

    我到底怎么建的图为啥要开这么大的数组啊?! 神题神题,本来以为图论出不出什么花来了. 首先要理解'团'的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘. 所以关于团一般都是NP问题,只有二分 ...

  9. hdu 4685 二分匹配+强连通分量

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 题解: 这一题是poj 1904的加强版,poj 1904王子和公主的人数是一样多的,并且给出 ...

随机推荐

  1. 解决WordPress设置错误的url网站不能访问的问题

    通过WordPress后台首选项更改了网站url地址之后,网站就会出现访问不了的情况,一般来说,网站后台也登陆不上去了,我从网上寻找到了四种方法,这四种方法前三种都是需要登陆到后台的,但实际上出错后, ...

  2. BGP映射和联盟

    BGP映射和联盟 一:请看下面四张有关于BGP映射和联盟的拓扑图 BGP联盟 BGP映射实例 BGP单映射 BGP多映射 二:以图一为列,进行BGP联盟的配置测试: 首先进行理论分析,在拓扑图中共用两 ...

  3. ethereum(以太坊)(基础)--容易忽略的坑(一)

    pragma solidity ^0.4.0; contract base{ address public _owner=msg.sender; uint _a; string internal _b ...

  4. Solr简单总结

    Solr 运行Solr服务 方式一:Jetty服务器启动Solr 进入solr-4.10.2/example目录 打开命令行,执行java –jar start.jar命令,即可启动Solr服务 打开 ...

  5. JavaSE库存管理系统项目实战

    需求分析 企业库房用于存放成品.半成品.原材料.工具等物资,一般情况下,这些物资统称为物料.库存管理常见业务包括物资的入库.出库.盘点.退货.报废以及财务核算等,业务逻辑比较复杂,库房信息系统项目开发 ...

  6. Python的matplotlib模块的使用-Github仓库

    import matplotlib.pyplot as plt import numpy as np import requests url='https://api.github.com/searc ...

  7. ruby mysql2

    1. mysql2连接选项 Mysql2::Client.new( :host, :username, :password, :port, :database, :socket = '/path/to ...

  8. 小程序开发-7-访问api数据与ES6在小程序中的应用

    访问API数据与ES6在小程序中的应用 看待组件的两种观点 组件复用 代码分离-(特别重要) 不能在一个页面写所有的代码,代码分离具有很强的可读性.可维护性 Blink Api 介绍与测试API ur ...

  9. codeblocks编译出错问题的解答!(编译c++ 或者c程序)

    典型错误:https://blog.csdn.net/jingmiaa/article/details/52054204 MinGW下载并配置gcc/g++编译环境:https://blog.csdn ...

  10. Ubuntu14.04安装opencv2.4.13

    本文参考相关链接:http://blog.csdn.net/honyniu/article/details/46390097   系 统:Ubuntu 14.04 x64 opencv版本:2.4.1 ...