After Farmer John realized that Bessie had installed a "tree-shaped" network among his N (1 <= N <= 10,000) barns at an incredible cost, he sued Bessie to mitigate his losses.

Bessie, feeling vindictive, decided to sabotage Farmer John's network by cutting power to one of the barns (thereby disrupting all the connections involving that barn). When Bessie does this, it breaks the network into smaller pieces, each of which retains full connectivity within itself. In order to be as disruptive as possible, Bessie wants to make sure that each of these pieces connects together no more than half the barns on FJ.

Please help Bessie determine all of the barns that would be suitable to disconnect.

Input

* Line 1: A single integer, N. The barns are numbered 1..N.

* Lines 2..N: Each line contains two integers X and Y and represents a connection between barns X and Y.

Output

* Lines 1..?: Each line contains a single integer, the number (from 1..N) of a barn whose removal splits the network into pieces each having at most half the original number of barns. Output the barns in increasing numerical order. If there are no suitable barns, the output should be a single line containing the word "NONE".

Sample Input

10
1 2
2 3
3 4
4 5
6 7
7 8
8 9
9 10
3 8

Sample Output

3
8

Hint

INPUT DETAILS:

The set of connections in the input describes a "tree": it connects all the barns together and contains no cycles.

OUTPUT DETAILS:

If barn 3 or barn 8 is removed, then the remaining network will have one piece consisting of 5 barns and two pieces containing 2 barns. If any other barn is removed then at least one of the remaining pieces has size at least 6 (which is more than half of the original number of barns, 5).

 
 #include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 1e5 + ;
const int INF = 0x7fffffff;
int n, dp[maxn][], head[maxn], tot, ans[maxn];
struct node {
int v, next;
} edge[maxn];
void init() {
tot = ;
memset(head, -, sizeof(head));
}
void add(int u, int v) {
edge[tot].v = v;
edge[tot].next = head[u];
head[u] = tot++;
edge[tot].v = u;
edge[tot].next = head[v];
head[v] = tot++;
}
int k = ;
int solve(int x, int fa) {
int sum = , maxs = -;
for (int i = head[x] ; i != - ; i = edge[i].next) {
int v = edge[i].v;
if (v == fa) continue;
int cost = solve(v, x);
if (cost > maxs) maxs = cost;
sum += cost;
}
if (n - sum > maxs) maxs = n - sum;
if (maxs <= n / ) ans[k++] = x;
return sum;
}
int main() {
while(scanf("%d", &n) != EOF) {
init();
for (int i = ; i < n - ; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
solve(, -);
if (k == ) printf("NONE\n");
else {
sort(ans, ans + k);
for (int i = ; i < k ; i++)
printf("%d\n", ans[i]);
}
}
return ;
}

poj 2378 Tree Cutting 树形dp的更多相关文章

  1. POJ 2378.Tree Cutting 树形dp 树的重心

    Tree Cutting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4834   Accepted: 2958 Desc ...

  2. POJ 2378 Tree Cutting 3140 Contestants Division (简单树形dp)

    POJ 2378 Tree Cutting:题意 求删除哪些单点后产生的森林中的每一棵树的大小都小于等于原树大小的一半 #include<cstdio> #include<cstri ...

  3. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  4. [poj3107/poj2378]Godfather/Tree Cutting树形dp

    题意:求树的重心(删除该点后子树最大的最小) 解题关键:想树的结构,删去某个点后只剩下它的子树和原树-此树所形成的数,然后第一次dp求每个子树的节点个数,第二次dp求解答案即可. 此题一开始一直T,后 ...

  5. POJ 2378 Tree Cutting (DFS)

    题目链接:http://poj.org/problem?id=2378 一棵树,去掉一个点剩下的每棵子树节点数不超过n/2.问有哪些这样的点,并按照顺序输出. dfs回溯即可. //#pragma c ...

  6. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

  7. HDU.5909.Tree Cutting(树形DP FWT/点分治)

    题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...

  8. POJ 2378 Tree Cutting (树的重心,微变形)

    题意: 给定一棵树,n个节点,若删除点v使得剩下的连通快最大都不超过n/2,则称这样的点满足要求.求所有这样的点,若没有这样的点,输出NONE. 思路: 只需要拿“求树的重心”的代码改一行就OK了.因 ...

  9. POJ 2378 Tree Cutting 子树统计

    题目大意:给出一棵树.将树中的一个节点去掉之后,这棵树会分裂成一些联通块.求去掉哪些点之后.全部联通块的大小不超过全部节点的一半.并按顺序输出. 思路:基础的子树统计问题,仅仅要深搜一遍就能够出解.这 ...

随机推荐

  1. QOS-QOS(服务质量)概述

    QOS-QOS(服务质量)概述 2018年7月7日  20:29 概述及背景: 1.  引入: 传统IP网络仅提供“尽力而为”的传输服务,网络有可用资源就转发,资源不足时就丢弃 新一代IP网络承载了 ...

  2. webDriver + Firefox 浏览器 完美兼容

    搞java最烦的就是不同版本的适配问题.现分享下实测成功的案例. Firefox:4.0.1 selenium:selenium-server-standalone-2.43.1.jar 下面这个链接 ...

  3. springboot2.x+maven+proguard代码混淆

    由于需要将源码打包做代码混淆,选择proguard,开始使用各种问题,各种jar包版本问题,但最终成功了,记录一下,也希望能够帮助大家 在pom中添加代码: <build> <fin ...

  4. 20145202 《网络对抗技术》 PC平台逆向破解

    20145202 <网络对抗技术> PC平台逆向破解 准备工作 先将环境设置为:堆栈可执行.地址随机化关闭 参考http://git.oschina.net/wildlinux/NetSe ...

  5. MUI:字符串和json数据的相互转换

    JSON.parse()--字符串转换json.JSON.stringify()--json转换成字符串 如:收到Json对象:response,则: {"result":&quo ...

  6. 25、react入门教程

    0. React介绍 0.1 什么是React? React(有时称为React.js 或ReactJS)是一个为数据提供渲染HTML视图的开源JavaScript库. 它由FaceBook.Inst ...

  7. MySQL初识2

    用python调用mysql的一些方法总结: 1.编码声明: # encoding: UTF-8#!/usr/bin/python 在开头处进行声明,避免出现输入中文时,提示声明错误(当然输入中文出现 ...

  8. Java课程设计--学生成绩管理系统

    一.团队名称: 团队成员 林艺薇 201721123032 网络1712 黄毓颖 201721123033 网络1712 唐川 201721123034 网络1712 梁才玉 201721123038 ...

  9. lintcode-136-分割回文串

    136-分割回文串 给定一个字符串s,将s分割成一些子串,使每个子串都是回文串. 返回s所有可能的回文串分割方案. 样例 给出 s = "aab",返回 [ ["aa&q ...

  10. 201621044079WEEK06-接口、内部类

    作业06-接口.内部类 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多 ...