P3203 [HNOI2010]弹飞绵羊

题目描述

某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

输入输出格式

输入格式:

第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1。

接下来一行有n个正整数,依次为那n个装置的初始弹力系数。

第三行有一个正整数m,

接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。

输出格式:

对于每个i=1的情况,你都要输出一个需要的步数,占一行。

说明

对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000


抽象一下问题,将弹飞的连到虚点\(n+1\)上,则图是一颗树,我们需要一个能修改边的,查询深度的连喵树。

我们发现其实不需要换根操作(然而本菜鸡最开始还打了)

\(link\)时提一个连一个虚边就行了

\(cat\)的时候把浅的\(access\)上去以后把深的\(splay\)一下然后直接断虚边

\(query\)时\(access\)一下,\(splay\)一下,就是左儿子大小。

事实上可以更简单


Code:

#include <cstdio>
#define ls ch[now][0]
#define rs ch[now][1]
#define fa par[now]
int min(int x,int y){return x<y?x:y;}
const int N=2e5+10;
int ch[N][2],siz[N],par[N],n,m,tmp,to[N];
bool isroot(int now)
{
return ch[fa][0]==now||ch[fa][1]==now;
}
int identity(int now)
{
return ch[fa][1]==now;
}
void updata(int now)
{
siz[now]=siz[ls]+siz[rs]+1;
}
void connect(int f,int now,int typ)
{
fa=f;ch[f][typ]=now;
}
void Rotote(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
updata(p),updata(now);
}
void splay(int now)
{
for(;isroot(now);Rotote(now))
if(isroot(fa))
Rotote(identity(now)^identity(fa)?now:fa);
}
void access(int now)
{
for(int las=0;now;las=now,now=fa)
splay(now),rs=las,updata(now);
}
void link(int u,int v)
{
access(v);
splay(u);
par[u]=v;
}
void cat(int u,int v)
{
access(v);
splay(u);
par[u]=0;
}
int query(int now)
{
access(now);
splay(now);
return siz[ls];
}
int main()
{
scanf("%d",&n);
for(int k,i=1;i<=n;i++)
{
scanf("%d",&k);
par[i]=min(i+k,n+1);
to[i]=par[i];
}
scanf("%d",&m);
for(int op,u,k,i=1;i<=m;i++)
{
scanf("%d%d",&op,&u);++u;
if(op==1) printf("%d\n",query(u));
else
{
scanf("%d",&k);
cat(u,to[u]);
to[u]=min(u+k,n+1);
link(u,to[u]);
}
}
return 0;
}

2018.8.11

洛谷 P3203 [HNOI2010]弹飞绵羊 解题报告的更多相关文章

  1. 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]

    题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  2. 洛谷P3203 [HNOI2010]弹飞绵羊(LCT,Splay)

    洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环 ...

  3. Bzoj2002/洛谷P3203 [HNOI2010]弹飞绵羊(分块)

    题面 Bzoj 洛谷 题解 大力分块,分块大小\(\sqrt n\),对于每一个元素记一下跳多少次能跳到下一个块,以及跳到下一个块的哪个位置,修改的时候时候只需要更新元素所在的那一块即可,然后询问也是 ...

  4. [洛谷P3203][HNOI2010]弹飞绵羊

    题目大意:有$n$个节点,第$i$个节点有一个弹力系数$k_i$,当到达第$i$个点时,会弹到第$i+k_i$个节点,若没有这个节点($i+k_i>n$)就会被弹飞.有两个操作: $x:$询问从 ...

  5. 洛谷 P3203 [HNOI2010]弹飞绵羊 || bzoj2002

    看来这个lct板子的确没什么问题 好像还可以分块做 #include<cstdio> #include<algorithm> using namespace std; type ...

  6. 洛谷 P3203 [HNOI2010]弹飞绵羊 分块

    我们只需将序列分成 n\sqrt{n}n​ 块,对于每一个点维护一个 val[i]val[i]val[i],to[i]to[i]to[i],分别代表该点跳到下一个块所需要的代价以及会跳到的节点编号.在 ...

  7. 洛谷 P3203 [HNOI2010]弹飞绵羊

    题意简述 有n个点,第i个点有一个ki,表示到达i这个点后可以到i + ki这个点 支持修改ki和询问一点走几次能走出所有点两个操作 题解思路 分块, 对于每个点,维护它走到下一块所经过的点数,它走到 ...

  8. 「洛谷P3202」[HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  9. [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)

    题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...

随机推荐

  1. php xml转数组 自定义xml_to_array

    <?php header("Content-type: text/xml; charset=utf-8"); $con = file_get_contents('xml路径' ...

  2. 八、USB驱动分析

    学习目标:分析USB驱动源码结构. 一.Windows下USB驱动理论问题 1. 当usb设备接入PC时,右下角弹出"发现AAA",并弹出对话框,提示安装驱动程序.没有驱动程序,W ...

  3. 开通CSDN博客的原因

                                                                          为什么要写博客? 提供持续学习的动力 例如,我为自己设限每天 ...

  4. dedecms织梦首页被篡改 网站被黑被跳转的解决办法建议

    2018年的中秋节即将来临,我们Sine安全公司,最近接到很多用dedecms程序的企业公司网站客户的反馈,说是公司网站经常被篡改,包括网站首页的标题内容以及描述内容,都被改成了什么北京赛车,北京PK ...

  5. 46-Identity MVC:登录逻辑实现

    1- Login.cshtml <h3>Login</h3> @model MvcCookieAuthSample.ViewModel.LoginViewModel <d ...

  6. MVC中路由的修改和浏览器的地址参数

    在 ASP.NET MVC 应用程序中,它是更常见的做法在作为路由数据 (像我们一样与身份证上面) 比将它们作为查询字符串传递的参数中传递. ) { return HttpUtility.HtmlEn ...

  7. Python全栈面试题

    Mr.Seven   博客园 首页 新随笔 联系 订阅 管理 随笔-132  文章-153  评论-516  不吹不擂,你想要的Python面试都在这里了[315+道题]   写在前面 近日恰逢学生毕 ...

  8. hdu4742 Pinball Game 3D

    真他娘的搞不懂cdq分治的顺序问题.但是candy?的博客里提到过,多想想吧-- #include <algorithm> #include <iostream> #inclu ...

  9. ExtJs工具篇(1)——在Aptana3中安装ExtJS 代码提示插件

    首先得下载Aptana 这个软件,我下载的是Aptana3这个版本.下载后,在"帮助"菜单中选择"安装新软件",弹出下面的对话框: 我们需要安装一个叫做&quo ...

  10. Java byte 位移操作 注意事项

    转自:http://blog.163.com/pilgrim_yang/blog/static/55631481201111542151582/ Java对byte 的 + - * / >> ...