BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯
这个题让我认识到我以往对于图上期望概率的认识是不完整的,我之前只知道正着退还硬生生的AC做过的所有图,那么现在让我来说一下逆退,一般来说对于概率性的东西都只是正推,因为有了他爸爸才有了他,而对于期望性的东西可以说是从终点开始每个点都是以这个点为起点到终点的期望,那么就可以是有本节点开花遗传和继承。
本题中说求异或,那么根据异或的一般思路,一位一位的搞,每一位不是一就是二我么可以求从这个点到终点这一位是1的期望也就是概率了
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 105
#define M 10005
using namespace std;
typedef double D;
D a[N][N],b[N],ans;
int head[N],t,bang[N],n,m;
struct T
{
int to,next,w;
}c[M<<];
inline void add(int x,int y,int z)
{
c[++t].to=y;
c[t].next=head[x];
head[x]=t;
bang[x]++;
c[t].w=z;
}
inline void Init()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
if(x!=y)
add(y,x,z);
}
}
inline D abs(D x)
{
return x<0.0?0.0-x:x;
}
inline void swap(D &x,D &y)
{
D temp=x;
x=y;
y=temp;
}
void gauss()
{
for(int i=,k=;i<=n;i++,k++)
{
int temp=i;
D need=abs(a[i][k]);
for(int j=i+;j<=n;j++)
if(abs(a[j][k])>need)
need=abs(a[j][k]),temp=j;
if(temp!=i)
for(int j=k;j<=n+;j++)
swap(a[temp][j],a[i][j]);
for(int j=i+;j<=n;j++)
{
need=a[j][k]/a[i][k];
for(int l=k;l<=n+;l++)
a[j][l]-=a[i][l]*need;
}
}
for(int i=n;i>;i--)
{
for(int j=i+;j<=n;j++)
a[i][n+]-=b[j]*a[i][j];
b[i]=a[i][n+]/a[i][i];
}
}
void job(int now)
{
for(int i=;i<=n;i++)
for(int j=;j<=n+;j++)
a[i][j]=0.0;
for(int x=;x<n;x++)
{
for(int i=head[x];i;i=c[i].next)
if(c[i].w&now)
a[x][c[i].to]-=1.0/bang[x],a[x][n+]-=1.0/bang[x];
else
a[x][c[i].to]+=1.0/bang[x];
a[x][x]-=1.0;
}
a[n][n]=1.0;
a[n][n+]=0.0;
gauss();
ans+=b[]*now;
}
inline void work()
{
for(int i=;i<;i++)
job(<<i);
printf("%.3lf",ans);
}
int main()
{
Init();
work();
return ;
}
BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯的更多相关文章
- BZOJ2337 [HNOI2011]XOR和路径 【概率dp + 高斯消元】
题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的 ...
- 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1170 Solved: 683 Description ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
- BZOJ2337:[HNOI2011]XOR和路径(高斯消元)
Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...
- BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元
大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...
- [BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)
直接不容易算,考虑拆成位处理. 设f[i]表示i到n的期望路径异或和(仅考虑某一位),则$f[y]=\sum\limits_{exist\ x1\to y=0}\frac{f[x1]}{d[x1]}+ ...
- BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)
解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...
随机推荐
- Python面向对象的类的操作
import randomimport time class ElectronicCoupon(): def __init__(self): self.__ecid=time.strftime('%Y ...
- Leecode刷题之旅-C语言/python-21.合并两个有序链表
/* * @lc app=leetcode.cn id=21 lang=c * * [21] 合并两个有序链表 * * https://leetcode-cn.com/problems/merge-t ...
- Go语言使用百度翻译api
Go语言使用百度翻译api 之前做过一个使用百度翻译api的工具,这个工具用于用户的自动翻译功能,是使用C#调用百度翻译api接口,既然在学习Go语言,那必然也是要使用Go来玩耍一番.这里我是这么安排 ...
- 复制MySQL数据库A到另外一个MySQL数据库B(仅仅针对innodb数据库引擎)
方案一:(不用太大的变化my.ini文件) copy 原数据库A中的 数据库(database) ib_logfile1 ib_logfile0 ibdata1: 关闭目的数据库B: 备份 ...
- MySQL数据库服务器逐渐变慢分析
第一步 检查系统的状态 1.1 使用sar来检查操作系统是否存在IO问题 #sar -u 2 10 — 即每隔2秒检察一次,共执行20次. [root@CacheMemCache tester]# s ...
- 一步一步构建手机WebApp开发——页面布局篇
继上一篇:一步一步构建手机WebApp开发——环境搭建篇过后,我相信很多朋友都想看看实战案例,这一次的教程是页面布局篇,先上图: 如上图所示,此篇教程便是教初学者如何快速布局这样的页面.废话少说,直接 ...
- Unity3d脚本生命周期
如图: 测试脚本: using UnityEngine; public class Test2 : MonoBehaviour { void Awake() { Debug.Log("Awa ...
- MD5、SHA校验命令
linux系统的软件很多时候都以境像的方式提供下载,但我们如何确实下载的文件是没有被篡改过的呢?Linux中一般用对下载的文件进行MD5和SHA校验来确认. MD5 我们拿iptraf软件来试验: 我 ...
- 总结const
int b; const int *a=&b; int const * a=&b; int * const a =&b; const int *const a=&b; ...
- web相关基础知识3
一 .浮动布局 ★元素浮动之后不占据原来的位置,脱离标准流 ★浮动的盒子在一行上显示 ★行内元素浮动之后转换为行内块元素.(不推荐使用,会脱离标准流,转行内元素最好使用display: inlin ...