【BZOJ3277】串

Description

字符串是oi界常考的问题。现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串(注意包括本身)。

Input

第一行两个整数n,k。   接下来n行每行一个字符串。

Output

输出一行n个整数,第i个整数表示第i个字符串的答案。

Sample Input

3 1 abc a ab

Sample Output

6 1 3

HINT

对于100%的数据,n,k,l<=100000

题解:需要的用的方法好像有点多,但是也比我一开始自己yy的要少,我一开始yy的是后缀数组+主席树+线段树(233)

首先用到这样一个结论,就是如果第i个后缀有x个前缀能被k个串包含,那么第i+1个后缀至少有x-1个前缀能被k个串包含(与height数组的求法类似~)

那么我们先预处理这样一个东西,ls[i]代表从最大的j使得[j,i]中包含k个串([j,i]我指的是height数组上的一段区间)。这个可以用双指针法直接搞。

然后我们仿照height数组的求法,假设后缀i-1有x个合法前缀,那么到第i个后缀的时候我们就从x开始向上枚举,用二分+ST表找出它左(右)边第一个height比它小的位置,再用ls判断一下这段区间是否包含k个串就行了,时间复杂度O(nlogn)。

#include <cstdio>
#include <iostream>
#include <cstring>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=200010;
int num,n,k,len,m,t,sum;
int r[maxn],sa[maxn],st[maxn],ra[maxn],rb[maxn],h[maxn],rank[maxn],bel[maxn],s[maxn],last[maxn];
char str[maxn];
int f[maxn][20],Log[maxn],ls[maxn],v[maxn];
long long ans[maxn];
void work()
{
int i,j,p,*x=ra,*y=rb;
for(i=0;i<n;i++) st[x[i]=r[i]]++;
for(i=1;i<m;i++) st[i]+=st[i-1];
for(i=n-1;i>=0;i--) sa[--st[x[i]]]=i;
for(j=p=1;p<n;j<<=1,m=p)
{
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<m;i++) st[i]=0;
for(i=0;i<n;i++) st[x[y[i]]]++;
for(i=1;i<m;i++) st[i]+=st[i-1];
for(i=n-1;i>=0;i--) sa[--st[x[y[i]]]]=y[i];
for(swap(x,y),i=p=1,x[sa[0]]=0;i<n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+j]==y[sa[i-1]+j])?p-1:p++;
}
for(i=1;i<n;i++) rank[sa[i]]=i;
for(i=p=0;i<n-1;h[rank[i++]]=p)
for(p?p--:0,j=sa[rank[i]-1];r[i+p]==r[j+p];p++);
}
int query(int a,int b)
{
if(a>b) return 1<<30;
int c=Log[b-a+1];
return min(f[a][c],f[b-(1<<c)+1][c]);
}
int check(int x,int y)
{
int L=x,R=n,mid;
while(L<R)
{
mid=L+R>>1;
if(query(x+1,mid)>=y) L=mid+1;
else R=mid;
}
if(query(ls[L-1]+1,L-1)>=y) return 1;
return 0;
}
int main()
{
scanf("%d%d",&num,&k);
int i,j,a,p;
for(i=1;i<=num;i++)
{
scanf("%s",str),a=strlen(str);
for(j=0;j<a;j++) bel[n]=i,r[n++]=str[j]-'a'+num;
last[i]=n,r[n++]=num-i;
}
m=26+num;
work();
for(i=num;i<n;i++) f[i][0]=h[i];
for(i=2;i<=n;i++) Log[i]=Log[i>>1]+1;
for(j=1;(1<<j)<n;j++)
for(i=num;i+(1<<j)-1<=n;i++) f[i][j]=min(f[i][j-1],f[i+(1<<j-1)][j-1]);
for(i=num;i<n&&sum<k;i++) sum+=!s[bel[sa[i]]],s[bel[sa[i]]]++;
ls[i-1]=num;
for(j=num;i<n;i++)
{
sum+=!s[bel[sa[i]]],s[bel[sa[i]]]++;
for(;j<=i&&sum>=k;j++) s[bel[sa[j]]]--,sum-=!s[bel[sa[j]]];
ls[i]=j-1;
}
for(i=p=0;i<n;i++)
{
if(!bel[i]) continue;
for(p?p--:0;p<last[bel[i]]-i&&check(rank[i],p+1);p++);
ans[bel[i]]+=p;
}
for(i=1;i<num;i++) printf("%lld ",ans[i]);
printf("%lld",ans[num]);
return 0;
}

【BZOJ3277/3473】串/字符串 后缀数组+二分+RMQ+双指针的更多相关文章

  1. BZOJ_2946_[Poi2000]公共串_后缀数组+二分答案

    BZOJ_2946_[Poi2000]公共串_后缀数组+二分答案 Description          给出几个由小写字母构成的单词,求它们最长的公共子串的长度. 任务: l        读入单 ...

  2. 【BZOJ 3473】 字符串 (后缀数组+RMQ+二分 | 广义SAM)

    3473: 字符串 Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串 ...

  3. 【BZOJ4556】[Tjoi2016&Heoi2016]字符串 后缀数组+二分+主席树+RMQ

    [BZOJ4556][Tjoi2016&Heoi2016]字符串 Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一 ...

  4. 【BZOJ-4556】字符串 后缀数组+二分+主席树 / 后缀自动机+线段树合并+二分

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 657  Solved: 274[Su ...

  5. BZOJ 2780: [Spoj]8093 Sevenk Love Oimaster( 后缀数组 + 二分 + RMQ + 树状数组 )

    全部串起来做SA, 在按字典序排序的后缀中, 包含每个询问串必定是1段连续的区间, 对每个询问串s二分+RMQ求出包含s的区间. 然后就是求区间的不同的数的个数(经典问题), sort queries ...

  6. BZOJ3277 串(后缀数组+二分答案+主席树)

    因为不会SAM,考虑SA.将所有串连起来并加分隔符,每次考虑计算以某个位置开始的子串有多少个合法. 对此首先二分答案,找到名次数组上的一个区间,那么只需要统计有多少个所给串在该区间内出现就可以了.这是 ...

  7. 【BZOJ3230】相似子串 后缀数组+二分+RMQ

    [BZOJ3230]相似子串 Description Input 输入第1行,包含3个整数N,Q.Q代表询问组数.第2行是字符串S.接下来Q行,每行两个整数i和j.(1≤i≤j). Output 输出 ...

  8. HDU 5558 Alice's Classified Message(后缀数组+二分+rmq(+线段树?))

    题意 大概就是给你一个串,对于每个\(i\),在\([1,i-1]\)中找到一个\(j\),使得\(lcp(i,j)\)最长,若有多个最大\(j\)选最小,求\(j\)和这个\(lcp\)长度 思路 ...

  9. BZOJ 3230: 相似子串( RMQ + 后缀数组 + 二分 )

    二分查找求出k大串, 然后正反做后缀数组, RMQ求LCP, 时间复杂度O(NlogN+logN) -------------------------------------------------- ...

随机推荐

  1. 对AOP切面的一些整理与理解

      首先上一张AOP的图示 一:几个重要的概念   1> 切面:横切关注点(跨越应用程序多个模块的功能)被模块化的特殊对象[验证切面.日志切面]   2> 通知:切面中的每个方法   3& ...

  2. Tomcat中work目录的作用

    今天在修改了某个jsp后发现:tomcat容器启动后,访问该jsp返回的结果依然是修改之前的内容,略感不解,于是乎研究了一下Tomcat中work目录的作用. Tomcat中work目录的作用: js ...

  3. Python绘制分段函数

    1.绘制分段函数:y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t) import numpy as npimport matplotlib.pyplot as plt#绘制分段函数 ...

  4. 一个由正则表达式引发的血案 vs2017使用rdlc实现批量打印 vs2017使用rdlc [asp.net core 源码分析] 01 - Session SignalR sql for xml path用法 MemCahe C# 操作Excel图形——绘制、读取、隐藏、删除图形 IOC,DIP,DI,IoC容器

    1. 血案由来 近期我在为Lazada卖家中心做一个自助注册的项目,其中的shop name校验规则较为复杂,要求:1. 英文字母大小写2. 数字3. 越南文4. 一些特殊字符,如“&”,“- ...

  5. popupwindow从底部弹出

    参考了网上的一些代码,自己写了个类,上代码 /** * Created by Lee on 2016/2/26. */ public class CameraPopupWindow { private ...

  6. TensorFlow学习笔记3——Placeholders and feed_dict

    1. Placeholders placeholders,顾名思义,就是占位的意思,举个例子:我们定义了一个关于x,y的函数 f(x,y)=2x+y,但是我们并不知道x,y的值,那么x,y就是等待确定 ...

  7. .htaccess中的apache rewrite规则写法详解(未完)

    转:http://www.cnblogs.com/adforce/archive/2012/11/23/2784664.html http://blog.csdn.net/Long_Xiao_Yun/ ...

  8. protobuf 在win10系统如何编译jar包

    最近在搞java服务器项目,前段要求用protobuf进行数据传输,以前没搞过,查了很多资料,走了一些弯路! 先把一些需要下载的链接放上来: protobuf下载地址:https://github.c ...

  9. 383. Ransom Note【easy】

    383. Ransom Note[easy] Given an arbitrary ransom note string and another string containing letters f ...

  10. MySQL和hive对比表结构脚本

    #!/bin/bash source /etc/profile runlog='/tmp/zewei/check_schema_log' hive_database_schema=/tmp/hive_ ...