官方文档: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ThreadPoolExecutor.html

1.简介

public class ThreadPoolExecutor extends AbstractExecutorService
  An ExecutorService that executes each submitted task using one of possibly several pooled threads, normally configured using Executors factory methods.

  Thread pools address two different problems: they usually provide improved performance when executing large numbers of asynchronous tasks, due to reduced per-task invocation overhead, and they provide a means of bounding and managing the resources, including threads, consumed when executing a collection of tasks. Each ThreadPoolExecutor also maintains some basic statistics, such as the number of completed tasks.

2.Executors工厂类构造线程池类的方法

  To be useful across a wide range of contexts, this class provides many adjustable parameters and extensibility hooks. However, programmers are urged to use the more convenient Executors factory methods

   Otherwise, use the following guide when manually configuring and tuning this class:

3.构造线程池的参数

3.1 Core and maximum pool sizes

  A ThreadPoolExecutor will automatically adjust the pool size (see getPoolSize()) according to the bounds set by corePoolSize (see getCorePoolSize()) and maximumPoolSize (see getMaximumPoolSize()). When a new task is submitted in method execute(java.lang.Runnable), and fewer than corePoolSize threads are running, a new thread is created to handle the request, even if other worker threads are idle. If there are more than corePoolSize but less than maximumPoolSize threads running, a new thread will be created only if the queue is full. By setting corePoolSize and maximumPoolSize the same, you create a fixed-size thread pool. By setting maximumPoolSize to an essentially unbounded value such as Integer.MAX_VALUE, you allow the pool to accommodate an arbitrary number of concurrent tasks. Most typically, core and maximum pool sizes are set only upon construction, but they may also be changed dynamically using setCorePoolSize(int) and setMaximumPoolSize(int).

3.2 On-demand construction

  By default, even core threads are initially created and started only when new tasks arrive, but this can be overridden dynamically using method prestartCoreThread() or prestartAllCoreThreads().

  You probably want to prestart threads if you construct the pool with a non-empty queue.

3.3 Creating new threads

  New threads are created using a ThreadFactory. If not otherwise specified, a Executors.defaultThreadFactory() is used, that creates threads to all be in the same ThreadGroup and with the same NORM_PRIORITY priority and non-daemon status. By supplying a different ThreadFactory, you can alter the thread's name, thread group, priority, daemon status, etc. If a ThreadFactory fails to create a thread when asked by returning null from newThread, the executor will continue, but might not be able to execute any tasks. Threads should possess the "modifyThread" RuntimePermission. If worker threads or other threads using the pool do not possess this permission, service may be degraded: configuration changes may not take effect in a timely manner, and a shutdown pool may remain in a state in which termination is possible but not completed.

3.4 Keep-alive times 线程执行完任务后的空闲时间

  If the pool currently has more than corePoolSize threads, excess threads will be terminated if they have been idle for more than the keepAliveTime (see getKeepAliveTime(java.util.concurrent.TimeUnit)). This provides a means of reducing resource consumption when the pool is not being actively used. If the pool becomes more active later, new threads will be constructed. This parameter can also be changed dynamically using method setKeepAliveTime(long, java.util.concurrent.TimeUnit). Using a value of Long.MAX_VALUE TimeUnit.NANOSECONDS effectively disables idle threads from ever terminating prior to shut down.   By default, the keep-alive policy applies only when there are more than corePoolSizeThreads. But method allowCoreThreadTimeOut(boolean) can be used to apply this time-out policy to core threads as well, so long as the keepAliveTime value is non-zero.

3.5 Queuing 当核心线程用完时,再添加任务时加到queue中

  Any BlockingQueue may be used to transfer and hold submitted tasks. The use of this queue interacts with pool sizing:

  • If fewer than corePoolSize threads are running, the Executor always prefers adding a new thread rather than queuing.
  • If corePoolSize or more threads are running, the Executor always prefers queuing a request rather than adding a new thread.
  • If a request cannot be queued, a new thread is created unless this would exceed maximumPoolSize, in which case, the task will be rejected.

  There are three general strategies for queuing:

  1. Direct handoffs. A good default choice for a work queue is a SynchronousQueue that hands off tasks to threads without otherwise holding them. Here, an attempt to queue a task will fail if no threads are immediately available to run it, so a new thread will be constructed. This policy avoids lockups when handling sets of requests that might have internal dependencies. Direct handoffs generally require unbounded maximumPoolSizes to avoid rejection of new submitted tasks. This in turn admits the possibility of unbounded thread growth when commands continue to arrive on average faster than they can be processed.
  2. Unbounded queues. Using an unbounded queue (for example a LinkedBlockingQueue without a predefined capacity) will cause new tasks to wait in the queue when all corePoolSize threads are busy. Thus, no more than corePoolSize threads will ever be created. (And the value of the maximumPoolSize therefore doesn't have any effect.) This may be appropriate when each task is completely independent of others, so tasks cannot affect each others execution; for example, in a web page server. While this style of queuing can be useful in smoothing out transient bursts of requests, it admits the possibility of unbounded work queue growth when commands continue to arrive on average faster than they can be processed.
  3. Bounded queues. A bounded queue (for example, an ArrayBlockingQueue) helps prevent resource exhaustion when used with finite maximumPoolSizes, but can be more difficult to tune and control. Queue sizes and maximum pool sizes may be traded off for each other: Using large queues and small pools minimizes CPU usage, OS resources, and context-switching overhead, but can lead to artificially low throughput. If tasks frequently block (for example if they are I/O bound), a system may be able to schedule time for more threads than you otherwise allow. Use of small queues generally requires larger pool sizes, which keeps CPUs busier but may encounter unacceptable scheduling overhead, which also decreases throughput.

3.6 Rejected tasks 拒绝任务的4个策略类

  New tasks submitted in method execute(java.lang.Runnable) will be rejected when the Executor has been shut down, and also when the Executor uses finite bounds for both maximum threads and work queue capacity, and is saturated. In either case, the execute method invokes the RejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) method of its RejectedExecutionHandler.

  Four predefined handler policies are provided:

  1. In the default ThreadPoolExecutor.AbortPolicy, the handler throws a runtime RejectedExecutionException upon rejection.
  2. In ThreadPoolExecutor.CallerRunsPolicy, the thread that invokes execute itself runs the task. This provides a simple feedback control mechanism that will slow down the rate that new tasks are submitted.
  3. In ThreadPoolExecutor.DiscardPolicy, a task that cannot be executed is simply dropped.
  4. In ThreadPoolExecutor.DiscardOldestPolicy, if the executor is not shut down, the task at the head of the work queue is dropped, and then execution is retried (which can fail again, causing this to be repeated.)

  It is possible to define and use other kinds of RejectedExecutionHandler classes. Doing so requires some care especially when policies are designed to work only under particular capacity or queuing policies.

4.Hook methods

  This class provides protected overridable beforeExecute(java.lang.Thread, java.lang.Runnable) and afterExecute(java.lang.Runnable, java.lang.Throwable) methods that are called before and after execution of each task. These can be used to manipulate the execution environment; for example, reinitializing ThreadLocals, gathering statistics, or adding log entries. Additionally, method terminated() can be overridden to perform any special processing that needs to be done once the Executor has fully terminated.

  If hook or callback methods throw exceptions, internal worker threads may in turn fail and abruptly terminate.

5.Queue maintenance

  Method getQueue() allows access to the work queue for purposes of monitoring and debugging. Use of this method for any other purpose is strongly discouraged. Two supplied methods, remove(java.lang.Runnable) and purge()are available to assist in storage reclamation when large numbers of queued tasks become cancelled.

6.Finalization

  A pool that is no longer referenced in a program AND has no remaining threads will be shutdown automatically. If you would like to ensure that unreferenced pools are reclaimed even if users forget to call shutdown(), then you must arrange that unused threads eventually die, by setting appropriate keep-alive times, using a lower bound of zero core threads and/or setting allowCoreThreadTimeOut(boolean).

7.Extension example.扩展示例

  Most extensions of this class override one or more of the protected hook methods. For example, here is a subclass that adds a simple pause/resume feature:

  class PausableThreadPoolExecutor extends ThreadPoolExecutor {
    private boolean isPaused;
    private ReentrantLock pauseLock = new ReentrantLock();
    private Condition unpaused = pauseLock.newCondition();

    public PausableThreadPoolExecutor(...) { super(...); }

    protected void beforeExecute(Thread t, Runnable r) {
      super.beforeExecute(t, r);
      pauseLock.lock();
      try {
        while (isPaused) unpaused.await();
      } catch (InterruptedException ie) {
        t.interrupt();
      } finally {
        pauseLock.unlock();
      }
    }

    public void pause() {
      pauseLock.lock();
      try {
        isPaused = true;
      } finally {
        pauseLock.unlock();
      }
    }

    public void resume() {
      pauseLock.lock();
      try {
        isPaused = false;
        unpaused.signalAll();
      } finally {
        pauseLock.unlock();
      }
    }
  }

java中的线程(3):线程池类 ThreadPoolExecutor「线程池的类型、参数、扩展等」的更多相关文章

  1. Java中多线程的使用(超级超级详细)线程池 7

    Java中多线程的使用(超级超级详细)线程池 7 什么是线程池? 线程池是一个容纳多个线程的容器,线程池中的线程可以重复使用,无需反复创建线程而消耗过多的资源 *使用多线程的好处: 1.降低消耗,减少 ...

  2. Java中多线程的使用(超级超级详细)线程安全原理解析 4

    Java中多线程的使用(超级超级详细)线程安全 4 什么是线程安全? 有多个线程在同时运行,这些线程可能会运行相同的代码,程序运行的每次结果和单线程运行的结果是一样的,而且其他变量的值也和预期的值一样 ...

  3. java中只能有一个实例的类的创建

    Java中,如果我们创建一个类,想让这个类只有一个对象,那么我们可以 1:把该类的构造方法设计为private 2:在该类中定义一个static方法,在该方法中创建对象 package test; / ...

  4. java 中操作字符串都有哪些类?(未完成)它们之间有什么区别?(未完成)

    java 中操作字符串都有哪些类?(未完成)它们之间有什么区别?(未完成)

  5. 【Java 多线程】Java线程池类ThreadPoolExecutor、ScheduledThreadPoolExecutor及Executors工厂类

    Java中的线程池类有两个,分别是:ThreadPoolExecutor和ScheduledThreadPoolExecutor,这两个类都继承自ExecutorService.利用这两个类,可以创建 ...

  6. java中volatile关键字的含义--volatile并不能做到线程安全

    在Java线程并发处理中,有一个关键字volatile的使用目前存在很大的混淆,以为使用这个关键字,在进行多线程并发处理的时候就可以万事大吉. Java语言是支持多线程的,为了解决线程并发的问题,在语 ...

  7. 【JAVA中String、StringBuffer、StringBuilder类的使用】

    一.String类概述 1.String对象一旦创建就不能改变. 2.字符串常量池. 字符串常量池的特点:池中有则直接使用,池中没有则创建新的字符串常量. 例1: public class Strin ...

  8. Java中的4个并发工具类 CountDownLatch CyclicBarrier Semaphore Exchanger

    在 java.util.concurrent 包中提供了 4 个有用的并发工具类 CountDownLatch 允许一个或多个线程等待其他线程完成操作,课题点 Thread 类的 join() 方法 ...

  9. Java中操作时间比较好用的类

    项目中经常用到日期的操作,包括日期的格式化.下面是几个比较常用的工具类. import java.text.SimpleDateFormat; import java.util.Date; impor ...

随机推荐

  1. Linux 下安装Yaf扩展

    1.在官网下载了yaf扩展包 yaf-3.0.3.tgz 2.开始安装yaf扩展 tar zxvf yaf-3.0.3.tgz cd yaf-3.0.3 phpize ./configure --wi ...

  2. redis过期key的清理策略

    一,有三种不同的删除策略(1),立即清理.在设置键的过期时间时,创建一个回调事件,当过期时间达到时,由时间处理器自动执行键的删除操作. (2),惰性清理.键过期了就过期了,不管.当读/写一个已经过期的 ...

  3. Visual Studio OpenCV 开发环境配置

    因为VS配置OpenCV好多新手都很难一次配置成功,而且OpenCV库每新建一个项目都要配置很是麻烦,所以今天就给大家介绍一个“一劳永逸”的方法. 注:理论上只要VS和OpenCV是版本兼容的,该方法 ...

  4. 几个SQL小知识(转)

    出处:http://www.cnblogs.com/wuguanglei/p/4205976.html 写在前面的话:之前做的一个项目,数据库及系统整体构架设计完成之后,和弟兄们经过一段时间的编码,系 ...

  5. 设计模式06: Adapter 适配器模式(结构型模式)

    Adapter 适配器模式(结构型模式) 适配(转换)的概念无处不在:电源转接头.电源适配器.水管转接头... 动机(Motivation)在软件系统中,由于应用环境的变化,常常需要将“一些现存的对象 ...

  6. HTML5 Canvas核心技术:图形、动画与游戏开发 PDF扫描版​

    HTML5 Canvas核心技术:图形.动画与游戏开发 内容简介: <HTML5 Canvas核心技术:图形.动画与游戏开发>中,畅销书作家David Geary(基瑞)先生以实用的范例程 ...

  7. Java并发编程的3个特性

    一.原子性 原子行:即一个或者多个操作作为一个整体,要么全部执行,要么都不执行,并且操作在执行过程中不会被线程调度机制打断:而且这种操作一旦开始,就一直运行到结束,中间不会有任何上下文切换(conte ...

  8. C语言编程学习开发的俄罗斯方块小游戏

    C语言是面向过程的,而C++是面向对象的 C和C++的区别: C是一个结构化语言,它的重点在于算法和数据结构.C程序的设计首要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到输出(或实现 ...

  9. ftp操作方法整理

    1.整理简化了下C#的ftp操作,方便使用    1.支持创建多级目录    2.批量删除    3.整个目录上传    4.整个目录删除    5.整个目录下载 2.调用方法展示, var ftp ...

  10. day02.3-元组内置方法

    元组——tuple的定义:test = (11,"alex",(22,33),[44,55],True) 特点:1. 元组是可迭代对象 2. 元组中元素是有序的,但其不可修改,也不 ...