Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库。它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTTP 测试需求。Requests 的哲学是以 PEP 20 的习语为中心开发的,所以它比 urllib 更加 Pythoner。更重要的一点是它支持 Python3 哦!

发送请求

使用 Requests 发送网络请求非常简单。

一开始要导入 Requests 模块:

import requests

然后,尝试获取某个网页。本例子中,我们来获取 Github 的公共时间线:

 r = requests.get('https://api.github.com')

现在,我们有一个名为 r 的 Response 对象。我们可以从这个对象中获取所有我们想要的信息。

Requests 简便的 API 意味着所有 HTTP 请求类型都是显而易见的。例如,你可以这样发送一个 HTTP POST 请求:


>>> r = requests.post('http://httpbin.org/post', data = {'key':'value'})

漂亮,对吧?那么其他 HTTP 请求类型:PUT,DELETE,HEAD 以及 OPTIONS 又是如何的呢?都是一样的简单:


>>> r = requests.put('http://httpbin.org/put', data = {'key':'value'})
>>> r = requests.delete('http://httpbin.org/delete')
>>> r = requests.head('http://httpbin.org/get')
>>> r = requests.options('http://httpbin.org/get')

都很不错吧,但这也仅是 Requests 的冰山一角

传递 URL 参数

你也许经常想为 URL 的查询字符串(query string)传递某种数据。如果你是手工构建 URL,那么数据会以键/值对的形式置于 URL 中,跟在一个问号的后面。例如, httpbin.org/get?key=val。 Requests 允许你使用 params 关键字参数,以一个字符串字典来提供这些参数。举例来说,如果你想传递 key1=value1 和 key2=value2 到 httpbin.org/get ,那么你可以使用如下代码:


>>> payload = {'key1': 'value1', 'key2': 'value2'}
>>> r = requests.get("http://httpbin.org/get", params=payload)

通过打印输出该 URL,你能看到 URL 已被正确编码:


>>> print(r.url)
http://httpbin.org/get?key2=value2&key1=value1

注意字典里值为 None 的键都不会被添加到 URL 的查询字符串里。

你还可以将一个列表作为值传入:


>>> payload = {'key1': 'value1', 'key2': ['value2', 'value3']}

>>> r = requests.get('http://httpbin.org/get', params=payload)
>>> print(r.url)
http://httpbin.org/get?key1=value1&key2=value2&key2=value3

响应内容

我们能读取服务器响应的内容。再次以 GitHub 时间线为例:


>>> import requests
>>> r = requests.get('https://api.github.com/events')
>>> r.text
u'[{"repository":{"open_issues":0,"url":"https://github.com/...

Requests 会自动解码来自服务器的内容。大多数 unicode 字符集都能被无缝地解码。

请求发出后,Requests 会基于 HTTP 头部对响应的编码作出有根据的推测。当你访问 r.text 之时,Requests 会使用其推测的文本编码。你可以找出 Requests 使用了什么编码,并且能够使用r.encoding 属性来改变它:


>>> r.encoding
'utf-8'
>>> r.encoding = 'ISO-8859-1'

如果你改变了编码,每当你访问 r.text ,Request 都将会使用 r.encoding 的新值。你可能希望在使用特殊逻辑计算出文本的编码的情况下来修改编码。比如 HTTP 和 XML 自身可以指定编码。这样的话,你应该使用 r.content 来找到编码,然后设置 r.encoding 为相应的编码。这样就能使用正确的编码解析 r.text 了。

在你需要的情况下,Requests 也可以使用定制的编码。如果你创建了自己的编码,并使用 codecs模块进行注册,你就可以轻松地使用这个解码器名称作为 r.encoding 的值, 然后由 Requests 来为你处理编码。

二进制响应内容

你也能以字节的方式访问请求响应体,对于非文本请求:


>>> r.content
b'[{"repository":{"open_issues":0,"url":"https://github.com/...

Requests 会自动为你解码 gzip 和 deflate 传输编码的响应数据。

例如,以请求返回的二进制数据创建一张图片,你可以使用如下代码:


>>> from PIL import Image
>>> from io import BytesIO >>> i = Image.open(BytesIO(r.content))

JSON 响应内容

Requests 中也有一个内置的 JSON 解码器,助你处理 JSON 数据:


>>> import requests

>>> r = requests.get('https://api.github.com/events')
>>> r.json()
[{u'repository': {u'open_issues': 0, u'url': 'https://github.com/...

如果 JSON 解码失败, r.json() 就会抛出一个异常。例如,响应内容是 401 (Unauthorized),尝试访问 r.json() 将会抛出 ValueError: No JSON object could be decoded 异常。

需要注意的是,成功调用 r.json() 并**不**意味着响应的成功。有的服务器会在失败的响应中包含一个 JSON 对象(比如 HTTP 500 的错误细节)。这种 JSON 会被解码返回。要检查请求是否成功,请使用 r.raise_for_status() 或者检查 r.status_code 是否和你的期望相同。

原始响应内容

在罕见的情况下,你可能想获取来自服务器的原始套接字响应,那么你可以访问 r.raw。 如果你确实想这么干,那请你确保在初始请求中设置了 stream=True。具体你可以这么做:


>>> r = requests.get('https://api.github.com/events', stream=True)
>>> r.raw
<requests.packages.urllib3.response.HTTPResponse object at 0x101194810>
>>> r.raw.read(10)
'\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03'

但一般情况下,你应该以下面的模式将文本流保存到文件:


with open(filename, 'wb') as fd:
for chunk in r.iter_content(chunk_size):
fd.write(chunk)


使用 Response.iter_content 将会处理大量你直接使用 Response.raw 不得不处理的。 当流下载时,上面是优先推荐的获取内容方式。 Note that chunk_size can be freely adjusted to a number that may better fit your use cases.

定制请求头

如果你想为请求添加 HTTP 头部,只要简单地传递一个 dict 给 headers 参数就可以了。

例如,在前一个示例中我们没有指定 content-type:


>>> url = 'https://api.github.com/some/endpoint'
>>> headers = {'user-agent': 'my-app/0.0.1'} >>> r = requests.get(url, headers=headers)

注意: 定制 header 的优先级低于某些特定的信息源,例如:

  • 如果在 .netrc 中设置了用户认证信息,使用 headers= 设置的授权就不会生效。而如果设置了 auth= 参数,``.netrc`` 的设置就无效了。
  • 如果被重定向到别的主机,授权 header 就会被删除。
  • 代理授权 header 会被 URL 中提供的代理身份覆盖掉。
  • 在我们能判断内容长度的情况下,header 的 Content-Length 会被改写。

更进一步讲,Requests 不会基于定制 header 的具体情况改变自己的行为。只不过在最后的请求中,所有的 header 信息都会被传递进去。

注意: 所有的 header 值必须是 string、bytestring 或者 unicode。尽管传递 unicode header 也是允许的,但不建议这样做。

更加复杂的 POST 请求

通常,你想要发送一些编码为表单形式的数据——非常像一个 HTML 表单。要实现这个,只需简单地传递一个字典给 data 参数。你的数据字典在发出请求时会自动编码为表单形式:


>>> payload = {'key1': 'value1', 'key2': 'value2'}

>>> r = requests.post("http://httpbin.org/post", data=payload)
>>> print(r.text)
{
...
"form": {
"key2": "value2",
"key1": "value1"
},
...
}

你还可以为 data 参数传入一个元组列表。在表单中多个元素使用同一 key 的时候,这种方式尤其有效:


>>> payload = (('key1', 'value1'), ('key1', 'value2'))
>>> r = requests.post('http://httpbin.org/post', data=payload)
>>> print(r.text)
{
...
"form": {
"key1": [
"value1",
"value2"
]
},
...
}

  


很多时候你想要发送的数据并非编码为表单形式的。如果你传递一个 string 而不是一个 dict,那么数据会被直接发布出去。

例如,Github API v3 接受编码为 JSON 的 POST/PATCH 数据:


>>> import json

>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'} >>> r = requests.post(url, data=json.dumps(payload))

此处除了可以自行对 dict 进行编码,你还可以使用 json 参数直接传递,然后它就会被自动编码。这是 2.4.2 版的新加功能:


>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'} >>> r = requests.post(url, json=payload)

POST一个多部分编码(Multipart-Encoded)的文件

Requests 使得上传多部分编码文件变得很简单:


>>> url = 'http://httpbin.org/post'
>>> files = {'file': open('report.xls', 'rb')} >>> r = requests.post(url, files=files)
>>> r.text
{
...
"files": {
"file": "<censored...binary...data>"
},
...
}

  


你可以显式地设置文件名,文件类型和请求头:


>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.xls', open('report.xls', 'rb'), 'application/vnd.ms-excel', {'Expires': '0'})} >>> r = requests.post(url, files=files)
>>> r.text
{
...
"files": {
"file": "<censored...binary...data>"
},
...
}

如果你想,你也可以发送作为文件来接收的字符串:


>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.csv', 'some,data,to,send\nanother,row,to,send\n')} >>> r = requests.post(url, files=files)
>>> r.text
{
...
"files": {
"file": "some,data,to,send\\nanother,row,to,send\\n"
},
...
}

  


如果你发送一个非常大的文件作为 multipart/form-data 请求,你可能希望将请求做成数据流。默认下 requests 不支持, 但有个第三方包 requests-toolbelt 是支持的

响应状态码

我们可以检测响应状态码:


>>> r = requests.get('http://httpbin.org/get')
>>> r.status_code
200

为方便引用,Requests还附带了一个内置的状态码查询对象:


>>> r.status_code == requests.codes.ok
True

如果发送了一个错误请求(一个 4XX 客户端错误,或者 5XX 服务器错误响应),我们可以通过Response.raise_for_status() 来抛出异常:


>>> bad_r = requests.get('http://httpbin.org/status/404')
>>> bad_r.status_code
404 >>> bad_r.raise_for_status()
Traceback (most recent call last):
File "requests/models.py", line 832, in raise_for_status
raise http_error
requests.exceptions.HTTPError: 404 Client Error

  


但是,由于我们的例子中 r 的 status_code 是 200 ,当我们调用 raise_for_status() 时,得到的是:


>>> r.raise_for_status()
None

  


一切都挺和谐哈。

响应头

我们可以查看以一个 Python 字典形式展示的服务器响应头:


>>> r.headers
{
'content-encoding': 'gzip',
'transfer-encoding': 'chunked',
'connection': 'close',
'server': 'nginx/1.0.4',
'x-runtime': '148ms',
'etag': '"e1ca502697e5c9317743dc078f67693f"',
'content-type': 'application/json'
}

  


但是这个字典比较特殊:它是仅为 HTTP 头部而生的。根据 RFC 2616, HTTP 头部是大小写不敏感的。

因此,我们可以使用任意大写形式来访问这些响应头字段:


>>> r.headers['Content-Type']
'application/json' >>> r.headers.get('content-type')
'application/json'

Cookie

如果某个响应中包含一些 cookie,你可以快速访问它们:


>>> url = 'http://example.com/some/cookie/setting/url'
>>> r = requests.get(url) >>> r.cookies['example_cookie_name']
'example_cookie_value'

  


要想发送你的cookies到服务器,可以使用 cookies 参数:


>>> url = 'http://httpbin.org/cookies'
>>> cookies = dict(cookies_are='working') >>> r = requests.get(url, cookies=cookies)
>>> r.text
'{"cookies": {"cookies_are": "working"}}'

  


Cookie 的返回对象为 RequestsCookieJar,它的行为和字典类似,但接口更为完整,适合跨域名跨路径使用。你还可以把 Cookie Jar 传到 Requests 中:


>>> jar = requests.cookies.RequestsCookieJar()
>>> jar.set('tasty_cookie', 'yum', domain='httpbin.org', path='/cookies')
>>> jar.set('gross_cookie', 'blech', domain='httpbin.org', path='/elsewhere')
>>> url = 'http://httpbin.org/cookies'
>>> r = requests.get(url, cookies=jar)
>>> r.text
'{"cookies": {"tasty_cookie": "yum"}}'
 

Python request 简单使用的更多相关文章

  1. Python 实现简单的 Web

    简单的学了下Python, 然后用Python实现简单的Web. 因为正在学习计算机网络,所以通过编程来加强自己对于Http协议和Web服务器的理解,也理解下如何实现Web服务请求.响应.错误处理以及 ...

  2. python超简单的web服务器

    今天无意google时看见,心里突然想说,python做web服务器,用不用这么简单啊,看来是我大惊小怪了. web1.py   1 2 3 #!/usr/bin/python import Simp ...

  3. Python 利用Python编写简单网络爬虫实例3

    利用Python编写简单网络爬虫实例3 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://bbs.51testing. ...

  4. Python 利用Python编写简单网络爬虫实例2

    利用Python编写简单网络爬虫实例2 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://www.51testing. ...

  5. Python+request+ smtplib 测试结果html报告邮件发送(上)《五》

    此方法通用适合所有邮箱的使用,只需注意几个点,如下: QQ邮箱.其他非QQ邮箱的写法,区别点如下: #--------------------------使用腾讯企业邮箱作为发件人的操作如下----- ...

  6. Python实现简单HTTP服务器

    Python实现简单HTTP服务器(一) 一.返回固定内容 复制代码 coding:utf-8 import socket from multiprocessing import Process de ...

  7. 用 python实现简单EXCEL数据统计

    任务: 用python时间简单的统计任务-统计男性和女性分别有多少人. 用到的物料:xlrd 它的作用-读取excel表数据 代码: import xlrd workbook = xlrd.open_ ...

  8. python开启简单webserver

    python开启简单webserver linux下面使用 python -m SimpleHTTPServer 8000 windows下面使用上面的命令会报错,Python.Exe: No Mod ...

  9. Python开发简单爬虫 - 慕课网

    课程链接:Python开发简单爬虫 环境搭建: Eclipse+PyDev配置搭建Python开发环境 Python入门基础教程 用Eclipse编写Python程序   课程目录 第1章 课程介绍 ...

随机推荐

  1. PSROIAlign的代码实现

    https://github.com/afantideng/R-FCN-PSROIAlign

  2. markdown的常用高级操作。

    符号 说明 对应编码(使用时去掉空格) 英文怎么说 & AND 符号 & amp; ampersand < 小于 & lt; little 大于 & gt; gr ...

  3. vue2.0移除或更改的一些东西

    一.vue2.0移除了$index和$key 虽然说现在很多文章说他们的代码是vue2.0版本的,但是有一些仔细一看,发现并不全是2.0版本,有些语法还是1.0的版本,比如这个$index,$key, ...

  4. 优雅的QSignleton (四) 通过属性器实现MonoSingleton

      大家都出去过周六了,而我却在家写代码T.T...   接下来介绍通过属性器实现MonoSingleton. 代码如下: MonoSingletonProperty.cs namespace QFr ...

  5. 工具类(过滤接口空值, value 或 空字符串) - iOS

    为了便于日常开发效率,因此创建了一些小的工具类便于使用.具体 code 如下:声明: #import <Foundation/Foundation.h> #import <UIKit ...

  6. STM32(3)——外部中断的使用

    1 .简介 ARM Coetex-M3内核共支持256个中断,其中16个内部中断,240个外部中断和可编程的256级中断优先级的设置.STM32目前支持的中断共84个(16个内部+68个外部),还有1 ...

  7. JavaScript 转载

    JavaScript概述 ECMAScript和JavaScript的关系 1996年11月,JavaScript的创造者--Netscape公司,决定将JavaScript提交给国际标准化组织ECM ...

  8. python网络编程的坑(持续更新)

    初学python,踩了许多坑...每天都学一点吧..(大佬绕过) 1.session的用法: session是python requests库中的一个重要功能.session可以存储用户的数据并且存储 ...

  9. JavaSE基础复习---1---2018/9/27

    2018/9/27 JavaSE学习笔记-1 目录: Java的起源 Java语言概述 1.Java的起源 现代编程语言的发展,大致可以理解为,机器码语言---汇编语言---C语言---C++语言-- ...

  10. 最短路径算法 2.Dijkstra算法

    Dijkstra 算法解决的是带权重的有向图上单源最短路径问题,该算法要求所有边的权重都为非负值.该算法的时间复杂度是O(N2),相比于处理无负权的图时,比Bellmad-Ford算法效率更高. 算法 ...