个人分类: 机器学习
本文为吴恩达《机器学习》课程的读书笔记,并用python实现。
前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单。
逻辑回归(logistic regression)虽然叫回归,但他做的事实际上是分类。这里我们讨论二元分类,即只分两类,y属于{0,1}。

选择如下的假设函数:
这里写图片描述
其中:
这里写图片描述
上式称为逻辑函数或S型函数,图像如下图:
这里写图片描述
可以看到,当z趋向正无穷,g(z)趋向1,当z趋向负无穷g(z)趋向0,即g(z)取值[0,1]。
同样,令 这里写图片描述 ,
现在我们要根据训练集,获取上面模型的最好参数 值。同样,可以通过最大似然函数的方法来求解。
假设:
这里写图片描述
合并上面两个式子:
这里写图片描述
假设m个训练样本是独立的,则似然函数:
这里写图片描述
同样,我们求其对数值以方便求解:
这里写图片描述
我们的目的是最大似然函数,即max l ,可以用梯度上升法:
这里写图片描述
下面我们先对g(z)进行函数求导(后面会用到):
这里写图片描述
则可以求得一个样本时的导数(第二步用到 ):
这里写图片描述
则增量梯度法(上一篇线性回归有介绍)有:
这里写图片描述
m个样本的批处理梯度法有:
这里写图片描述

python 代码:
##author:lijiayan
##data:2016/10/27
from numpy import *
import matplotlib.pyplot as plt

def loadData(filename):
data = loadtxt(filename)
x = data[:,0:2]
y = data[:,2:3]
return x,y

#the sigmoid function
def sigmoid(x):
return 1.0 / (1 + exp(-x))

#the cost function
def costfunction(y,h):
y = array(y)
h = array(h)
J = sum(y*log(h))+sum((1-y)*log(1-h))
return J

# the batch gradient descent algrithm
def gradescent(x,y):
m,n = shape(x) #m: number of training example; n: number of features
x = c_[ones(m),x] #add x0
x = mat(x) # to matrix
y = mat(y)
a = 0.002 # learning rate
maxcycle = 2000
theta = ones((n+1,1)) #initial theta

J = []
for i in range(maxcycle):
h = sigmoid(x*theta)
theta = theta + a * x.transpose()*(y-h)
cost = costfunction(y,h)
J.append(cost)

plt.plot(J)
plt.show()
return theta,cost

#the stochastic gradient descent (m should be large,if you want the result is good)
def stocGraddescent(x,y):
m,n = shape(x) #m: number of training example; n: number of features
x = c_[ones(m),x] #add x0
x = mat(x) # to matrix
y = mat(y)
a = 0.01 # learning rate
theta = ones((n+1,1)) #initial theta

J = []
for i in range(m):
h = sigmoid(x[i]*theta)
theta = theta + a * x[i].transpose()*(y[i]-h)
cost = costfunction(y,h)
J.append(cost)
plt.plot(J)
plt.show()
return theta,cost

#plot the decision boundary
def plotbestfit(x,y,theta):
plt.plot(x[:,0:1][where(y==1)],x[:,1:2][where(y==1)],'ro')
plt.plot(x[:,0:1][where(y!=1)],x[:,1:2][where(y!=1)],'bx')
x1= arange(-4,4,0.1)
x2 =(-float(theta[0])-float(theta[1])*x1) /float(theta[2])

plt.plot(x1,x2)
plt.xlabel('x1')
plt.ylabel(('x2'))
plt.show()

def classifyVector(inX,theta):
prob = sigmoid(sum(inX*theta))
print 'the probobility is:',prob
if prob > 0.5:
return 1.0
else:
return 0.0

if __name__=='__main__':
x,y = loadData("testSet.txt")
theta,cost = gradescent(x,y)
print 'theta:\n',theta
print 'J:',cost

X = [1,2,9]
print 'the new input:',X
h = classifyVector(X,theta)
print 'the predict y:',h
plotbestfit(x,y,theta)

这个是logL(似然函数对数值)的曲线图,有点cost function的意思,只不过cost function取最小值,这个是取最大值,平稳了不震荡、不发散,就说明算法正常运行:
这里写图片描述

这个是两个类的分类示意图:
这里写图片描述

这是最后的运算结果,给出了theta值,logL的最终值(最大值),以及新来一个输入X,模型给出的预测值。注意,输入是两个特征x1,x2,这边X=[1,2,9]是三个特征,其中有一个是x0=1。
这里写图片描述

机器学习/逻辑回归(logistic regression)/--附python代码的更多相关文章

  1. 机器学习(四)--------逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连 ...

  2. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  3. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  4. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...

  5. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  6. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  7. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  8. ML 逻辑回归 Logistic Regression

    逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...

  9. 【机器学习】Octave 实现逻辑回归 Logistic Regression

    ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分 ...

  10. [笔记]机器学习(Machine Learning) - 02.逻辑回归(Logistic Regression)

    逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪 ...

随机推荐

  1. An error occurred during the installation of assembly 'Microsoft.VC90.ATL or 'Microsoft.VC80.ATL'

    An error occurred during the installation of assembly 'Microsoft.VC90.ATL or 'Microsoft.VC80.ATL' 下载 ...

  2. 【SQL SERVER学习笔记】Sqlserver游标的尝试

    DECLARE @ProName NVARCHAR(50)DECLARE @CityName NVARCHAR(50)DECLARE @ProId INT DECLARE @CityId INT DE ...

  3. Javascript 基础汇总

    1 javascript字符串 属性:.length  计算字符串长度 转义字符 \     \n 换行 \r 回车 字符串断行 需要使用反斜杠  \ 2 字符串方法 charAt(n)  返回指定索 ...

  4. 将某页面中ajax中获取到的信息放置到sessionStorage中保存,并在其他页面调用这些数据。

    A页面代码: var obj = data.data; var infostr = JSON.stringify(obj);//转换json sessionStorage.obj = infostr; ...

  5. JavaScript的原型(prototype、__proto__、constructor)

    构造函数:function Foo() {}; 实例对象: let f1 = new Foo; let o1 = new Foo; 一般函数都有prototype属性,除了window.Math和Fu ...

  6. SpringBoot非官方教程 | 第七篇:springboot开启声明式事务

    转载请标明出处: http://blog.csdn.net/forezp/article/details/70833629 本文出自方志朋的博客 springboot开启事务很简单,只需要一个注解@T ...

  7. 在Win7虚拟机下搭建Hadoop2.6.0+Spark1.4.0单机环境

    Hadoop的安装和配置可以参考我之前的文章:在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境. 本篇介绍如何在Hadoop2.6.0基础上搭建spark1.4.0单机环境. 1. 软件准备 ...

  8. datagrid中设置编辑,删除列是否可以访问

    foreach (RepeaterItem Item in rpt_Result.Items) { LinkButton edit = (LinkButton)Item.FindControl(&qu ...

  9. 随便说说Promise

    为啥要说 promise ? 因为这是前端必须要掌握的一个知识,吹逼必备 首先说说 Promise 是什么? Promise 是JavaScript的第一个异步标准模型,一个包含传递信息与状态的对象, ...

  10. oracle约束约束状态和设计习惯

    oracle约束状态有几个项目,会让人迷惑,分别是: enable/disable--是否启用/禁用 validate/invalidate--确认/不确认 deferrable/not deferr ...