简介

FFT是多项式乘法的一种快速算法, 时间复杂度 \(O(n \log n)\).

FFT可以用于求解形如\(C_i = \sum_{j=0}^i A_jB_{i-j}\)的式子. 如果下标有偏差,可以通过平移, 翻转等方法化为上式.

Code

const int nmax=(int)3e6+50;
const db pi=acos(-1.0); struct tcpx{db a,b;}c1[nmax],c2[nmax];
tcpx operator+(tcpx a,tcpx b){return (tcpx){a.a+b.a,a.b+b.b};}
tcpx operator-(tcpx a,tcpx b){return (tcpx){a.a-b.a,a.b-b.b};}
tcpx operator*(tcpx a,tcpx b){return (tcpx){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};} int l,rev[nmax];
void dft(tcpx *c,int n,int fl){
rep(i,0,n-1)if(i<rev[i])swap(c[i],c[rev[i]]);
for(int i=1;i<n;i<<=1){
tcpx wn=(tcpx){cos(pi/i),fl*sin(pi/i)};
for(int j=0,p=(i<<1);j<n;j+=p){
tcpx w=(tcpx){1,0};
for(int k=0;k<i;++k,w=w*wn){
tcpx x=c[j+k],y=w*c[j+k+i];
c[j+k]=x+y,c[j+k+i]=x-y;
}
}
}
}
void fft(tcpx *c1,int n,tcpx *c2,int m,tcpx *c3){//c3=c1*c2; c3 could equal to c1/c2; cannot use c1 or c2 later
m+=n,l=0;
for(n=1;n<=m;n<<=1)++l;
rep(i,0,n-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
dft(c1,n,1),dft(c2,n,1);
rep(i,0,n-1)c3[i]=c1[i]*c2[i];
dft(c3,n,-1);
rep(i,0,n-1)c3[i].a=(c3[i].a/n);
} //print as intager
rep(i,0,n+m-2)cout<<(int)(c1[i].a+.5)<<' ';

https://www.cnblogs.com/ppprseter/p/10079353.html

[模板] 快速傅里叶变换/FFT/NTT的更多相关文章

  1. 快速傅里叶变换FFT / NTT

    目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...

  2. [模板]快速傅里叶变换(FFT)

    Miskcoo大佬的多项式全家桶传送门 rvalue大佬的FFT讲解传送门 用途 将多项式快速(nlogn)变成点值表达,或将点值表达快速变回系数表达(逆变换),(多数时候)来达到求卷积的目的 做法 ...

  3. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  4. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  5. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  6. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  7. 快速傅里叶变换(FFT)学习笔记(其二)(NTT)

    再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...

  8. 快速傅里叶变换(FFT)_转载

    FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...

  9. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

随机推荐

  1. 微信小程序picker的坑

    js文件: Companyarr: [{ id: '公司id1', companyname: "公司1的名字" }, { id: '公司id2', companyname: &qu ...

  2. Arcgis瓦片--数据获取

    Arcgis的二维地图瓦片有两种获取方式 1.在Arcmap中对配置好的地图进行切图,生成对应瓦片 2.使用第三方的地图下载器,直接下载,导出成arcgis瓦片格式即可使用. 备注:这里主要介绍第二种 ...

  3. Kotlin入门(32)网络接口访问

    手机上的资源毕竟有限,为了获取更丰富的信息,就得到辽阔的互联网大海上冲浪.对于App自身,也要经常与服务器交互,以便获取最新的数据显示到界面上.这个客户端与服务端之间的信息交互,基本使用HTTP协议进 ...

  4. [伟哥开源项目基金会](https://github.com/AspNetCoreFoundation)

    伟哥开源项目基金会 GitHub_base=> 伟哥开源项目基金会 该项目作者为伟哥,GitHub地址:https://github.com/amh1979: 该项目维护者为鸟窝,GitHub地 ...

  5. myapp——自动生成小学四则运算题目的命令行程序(侯国鑫 谢嘉帆)

    1.Github项目地址 https://github.com/baiyexing/myapp.git 2.功能要求 题目:实现一个自动生成小学四则运算题目的命令行程序 功能(已全部实现) 使用 -n ...

  6. SQLServer之修改PRIMARY KEY

    使用SSMS数据库管理工具修改PRIMARY KEY 1.连接数据库,选择数据表->右键点击->选择设计(或者展开键,选择要修改的键,右键点击,选择修改,后面步骤相同). 2.选择要修改的 ...

  7. jenkins安装详细教程

    一.jenkins简介 jenkins是一个开源的软件项目,是基于java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. 1.持续的软件版本 ...

  8. java多线程(死锁,lock接口,等待唤醒机制)

    一.Lock接口 常用方法 Lock提供了一个更加面对对象的锁,在该锁中提供了更多的操作锁的功能. 使用Lock接口,以及其中的lock()方法和unlock()方法替代同步,对电影院卖票案例中Tic ...

  9. 监控zookeeper

    [4ajr@db1 scripts]$ cat zookeeper_mode.sh #!/bin/bash mode=`echo srvr|nc 127.0.0.1 2181|awk '/Mode/{ ...

  10. Java Scanner 类

    下面是创建 Scanner 对象的基本语法: Scanner s = new Scanner(System.in); Scanner -是java类库的一个基础类,一个可以使用正则表达式来解析基本类型 ...