简介

FFT是多项式乘法的一种快速算法, 时间复杂度 \(O(n \log n)\).

FFT可以用于求解形如\(C_i = \sum_{j=0}^i A_jB_{i-j}\)的式子. 如果下标有偏差,可以通过平移, 翻转等方法化为上式.

Code

const int nmax=(int)3e6+50;
const db pi=acos(-1.0); struct tcpx{db a,b;}c1[nmax],c2[nmax];
tcpx operator+(tcpx a,tcpx b){return (tcpx){a.a+b.a,a.b+b.b};}
tcpx operator-(tcpx a,tcpx b){return (tcpx){a.a-b.a,a.b-b.b};}
tcpx operator*(tcpx a,tcpx b){return (tcpx){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};} int l,rev[nmax];
void dft(tcpx *c,int n,int fl){
rep(i,0,n-1)if(i<rev[i])swap(c[i],c[rev[i]]);
for(int i=1;i<n;i<<=1){
tcpx wn=(tcpx){cos(pi/i),fl*sin(pi/i)};
for(int j=0,p=(i<<1);j<n;j+=p){
tcpx w=(tcpx){1,0};
for(int k=0;k<i;++k,w=w*wn){
tcpx x=c[j+k],y=w*c[j+k+i];
c[j+k]=x+y,c[j+k+i]=x-y;
}
}
}
}
void fft(tcpx *c1,int n,tcpx *c2,int m,tcpx *c3){//c3=c1*c2; c3 could equal to c1/c2; cannot use c1 or c2 later
m+=n,l=0;
for(n=1;n<=m;n<<=1)++l;
rep(i,0,n-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
dft(c1,n,1),dft(c2,n,1);
rep(i,0,n-1)c3[i]=c1[i]*c2[i];
dft(c3,n,-1);
rep(i,0,n-1)c3[i].a=(c3[i].a/n);
} //print as intager
rep(i,0,n+m-2)cout<<(int)(c1[i].a+.5)<<' ';

https://www.cnblogs.com/ppprseter/p/10079353.html

[模板] 快速傅里叶变换/FFT/NTT的更多相关文章

  1. 快速傅里叶变换FFT / NTT

    目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...

  2. [模板]快速傅里叶变换(FFT)

    Miskcoo大佬的多项式全家桶传送门 rvalue大佬的FFT讲解传送门 用途 将多项式快速(nlogn)变成点值表达,或将点值表达快速变回系数表达(逆变换),(多数时候)来达到求卷积的目的 做法 ...

  3. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  4. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  5. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  6. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  7. 快速傅里叶变换(FFT)学习笔记(其二)(NTT)

    再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...

  8. 快速傅里叶变换(FFT)_转载

    FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...

  9. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

随机推荐

  1. Bootstrap 实战之响应式个人博客 (二)

    阅读本博文前请参考:Bootstrap 实战之响应式个人博客 (一) 一.博客 1.结构 整体博客详情页的结构共包括四部分: 导航栏 博客主体内容 右侧栏:全局搜索框,广告位,推荐阅读 页尾 其中导航 ...

  2. 环境配置(pycharm+virtualenv+git+github等)

    本文转载自https://blog.csdn.net/xiaogeldx/article/details/87315081 铺垫 数据表示方式 - 计算机使用二进制作为自己的机器语言也就是数据的表示方 ...

  3. Xaramin IOS 开发常见问题

    调试时提示找不到obj某某文件,勾选后编译,再取消勾选后再次调试 APP不能上网(而且无法通过配置允许上网的APP,因为根本 找不到需要的APP),不要使用IOS11测试版本,自动禁网 截图路径 %U ...

  4. Android ION内存分配

    The Android ION memory allocator 英文原文 ION heaps ION设计的目标 为了避免内存碎片化,或者为一些有着特殊内存需求的硬件,比如GPUs.display c ...

  5. 红米Note 5A完美卡刷开发版获得ROOT超级权限的方法

    小米的手机不同手机型号一般情况官方论坛都提供两个不同的系统,大概可分为稳定版和开发版,稳定版没有提供root权限管理,开发版中就支持了root权限,在很多工作的时候我们需要使用的一些功能强大的APP, ...

  6. 安装vmware-tools遇the path "" is not valid path to the gcc binary和the path "" is not a valid path to the 3.10.0-327.e17.x86_64 kernel headers问题解决

    #./vmware-install.pl踩点: 1.the path "" is not valid path to the gcc binary 2.the path " ...

  7. iOS 防止UIButton重复点击

    使用UIButton的enabled或userInteractionEnabled 使用UIButton的enabled属性, 在点击后, 禁止UIButton的交互, 直到完成指定任务之后再将其en ...

  8. typora快捷键

    目录 基础信息 常用快捷键 修改快捷键 基础信息 typora是一款极佳的markdown写作软件,编辑和预览两者合二为一,免费良心软件,推荐使用. 官网:https://www.typora.io/ ...

  9. django 创建admin用户名跟密码

    一.django中创建用户名和密码 (venv) D:\project\py37project\Djangopro\Procrm>Python37 manage.py createsuperus ...

  10. 修改 TeamViewer ID 的方法

    TeamViewer 使用频繁后会被判定为商业用途,不可用.此软件的账号和设备mac地址绑定. 修改TeamViewer ID后可以重新开始使用.下述方法可以成功修改TeamViewer ID. 关闭 ...