Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on the first coordinate. Let \(A\) be the subspace of \(\mathbb{R}\times\mathbb{R}\) consisting of all points \(x \times y\) for which either \(x \geq 0\) or \(y = 0\) (or both); let \(q: A \rightarrow \mathbb{R}\) be obtained by restricting \(\pi_1\). Show that \(q\) is a quotient map that is neither open nor closed.

Proof (a) Show \(q\) is a quotient map.

The projection map \(\pi_1\) is continuous because the pre-image of any open set \(U\) in \(\mathbb{R}\) under \(\pi_1\) is \(U \times \mathbb{R}\), which is open in the product space \(\mathbb{R}\times\mathbb{R}\). Then its restriction \(q\) is also continuous due to Theorem 18.2.

According to the illustrated domain of \(q\) in Figure 1 which is marked in light grey, it is obvious that \(q\) is surjective. It also shows the three types of saturated open sets in \(A\) with respect to \(q\), which are marked in red:

  • \((a,b) \times \{0\}\) with \(a < 0\) and \(b \leq 0\) and its image under \(q\) is \((a, b)\).
  • \((a,b) \times \mathbb{R}\) with \(a \geq 0\) and \(b > 0\) and its image under \(q\) is \((a, b)\).
  • \((a, 0) \times \{0\} \cup [0,b) \times \mathbb{R}\) with \(a < 0\) and \(b > 0\). Because a map preserves set union operation, its image under \(q\) is \((a, b)\).

It can be seen that for the three types of saturated open sets, their images are all open in \(\mathbb{R}​\). Meanwhile, arbitrary union of the above three types saturated open sets is also a saturated open set with its image open in \(\mathbb{R}​\). Therefore, \(q​\) is a quotient map.

Figure 1. Illustration of the domain of \(q\) and saturated open sets in \(A\).

(b) Show \(q\) is neither an open nor a closed map.

Let \(U = [0, 1) \times (1, 2)\) be an open set of \(A\) in the subspace topology, which is not saturated. \(q(U) = [0, 1)\) is not open in \(\mathbb{R}\). Hence \(q\) is not an open map.

Let \(U = \{(x,y) \vert xy = 1 \;\text{and}\; x > 0 \}\) which is closed in \(\mathbb{R} \times \mathbb{R}\). According to Theorem 17.2, \(U\) is also closed in the subspace \(A\). Then \(q(U)=(0,+\infty)\), which is not closed in \(\mathbb{R}\). Hence \(q\) is not a closed map.

Comment This exercise shows that a function being open or closed map is a sufficient but not a necessary condition for the function to be a quotient map.

James Munkres Topology: Sec 22 Exer 3的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  3. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  4. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

  5. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  6. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  7. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  8. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  9. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

随机推荐

  1. JS学习笔记Day21

    一.mySQL数据库 (一)数据库的概念 1.概念:可以存储数据的一个仓库 2.结构化数据:以表格的形式展现,结构更清晰,这样的数据称之为结构化数据 (二)数据库管理软件 1.一种对数据库文件进行管理 ...

  2. CentOS安装glibc-2.14

    CentOS安装glibc-2.14   到http://ftp.gnu.org/gnu/glibc/下载glibc-2.14.tar.gz wget https://ftp.gnu.org/gnu/ ...

  3. C# Linq to Entity 多条件 OR查询

    技术背景:框架MVC,linq to Entity 需要一定的lambda书写能力 问题:在简单的orm中完成一些简单的增删查改是通过where insert delete update 完成的,但是 ...

  4. 多输入select

    目录 多输入select IO模型 select介绍 小demo 注意 引入电子书 title: 多输入select date: 2019/3/20 17:21:34 toc: true --- 多输 ...

  5. Phoenix(SQL On HBase)

    1.简介 Phoenix是一个HBase框架,可以通过SQL的方式来操作HBase. Phoenix是构建在HBase上的一个SQL层,是内嵌在HBase中的JDBC驱动,能够让用户使用标准的JDBC ...

  6. jquery script两个属性

    今天使用jquery cdn时发现多了两个属性. <script   src="http://code.jquery.com/jquery-2.2.4.min.js"   i ...

  7. SimpleDateFormat 线程不安全及解决方案

    SimpleDateFormat定义 SimpleDateFormat 是一个以与语言环境有关的方式来格式化和解析日期的具体类.它允许进行格式化(日期 -> 文本).解析(文本 -> 日期 ...

  8. AngularJs的基本使用(一)

    AngularJS 指令 AngularJS 通过 ng-directives 扩展了 HTML,AngularJS 指令是以 ng 作为前缀的 HTML 属性. ng-app 指令定义一个 Angu ...

  9. mysql远程连接很慢问题解决

    mysql开启远程访问发现从远程连接每次都在5秒以上,从本机连接很快. 解决方案: [mysqld] 标签下添加一行配置 skip-name-resolve 重启mysqld服务, 问题解决!

  10. Appnium-API-Execute Mobile Command

    Execute Mobile Command Java:driver.executeScript("mobile: scroll", ImmutableMap.of("d ...