1. #Tensor索引操作
  2. '''''
  3. Tensor支持与numpy.ndarray类似的索引操作,语法上也类似
  4. 如无特殊说明,索引出来的结果与原tensor共享内存,即修改一个,另一个会跟着修改
  5. '''
  6. import torch as t
  7. a = t.randn(3,4)
  8. '''''tensor([[ 0.1986,  0.1809,  1.4662,  0.6693],
  9. [-0.8837, -0.0196, -1.0380,  0.2927],
  10. [-1.1032, -0.2637, -1.4972,  1.8135]])'''
  11. print(a[0])         #第0行
  12. '''''tensor([0.1986, 0.1809, 1.4662, 0.6693])'''
  13. print(a[:,0])       #第0列
  14. '''''tensor([ 0.1986, -0.8837, -1.1032])'''
  15. print(a[0][2])      #第0行第2个元素,等价于a[0,2]
  16. '''''tensor(1.4662)'''
  17. print(a[0][-1])     #第0行最后一个元素
  18. '''''tensor(0.6693)'''
  19. print(a[:2,0:2])    #前两行,第0,1列
  20. '''''tensor([[ 0.1986,  0.1809],
  21. [-0.8837, -0.0196]])'''
  22. print(a[0:1,:2])    #第0行,前两列
  23. '''''tensor([[0.1986, 0.1809]])'''
  24. print(a[0,:2])      #注意两者的区别,形状不同
  25. '''''tensor([0.1986, 0.1809])'''
  26. print(a>1)
  27. '''''tensor([[0, 0, 1, 0],
  28. [0, 0, 0, 0],
  29. [0, 0, 0, 1]], dtype=torch.uint8)'''
  30. print(a[a>1])        #等价于a.masked_select(a>1),选择结果与原tensor不共享内存空间
  31. print(a.masked_select(a>1))
  32. '''''tensor([1.4662, 1.8135])
  33. tensor([1.4662, 1.8135])'''
  34. print(a[t.LongTensor([0,1])])
  35. '''''tensor([[ 0.1986,  0.1809,  1.4662,  0.6693],
  36. [-0.8837, -0.0196, -1.0380,  0.2927]])'''
  37. '''''
  38. 常用的选择函数
  39. index_select(input,dim,index)   在指定维度dim上选取,列如选择某些列、某些行
  40. masked_select(input,mask)       例子如上,a[a>0],使用ByteTensor进行选取
  41. non_zero(input)                 非0元素的下标
  42. gather(input,dim,index)         根据index,在dim维度上选取数据,输出size与index一样
  43. gather是一个比较复杂的操作,对一个二维tensor,输出的每个元素如下:
  44. out[i][j] = input[index[i][j]][j]   #dim = 0
  45. out[i][j] = input[i][index[i][j]]   #dim = 1
  46. '''
  47. b = t.arange(0,16).view(4,4)
  48. '''''tensor([[ 0,  1,  2,  3],
  49. [ 4,  5,  6,  7],
  50. [ 8,  9, 10, 11],
  51. [12, 13, 14, 15]])'''
  52. index = t.LongTensor([[0,1,2,3]])
  53. print(b.gather(0,index))            #取对角线元素
  54. '''''tensor([[ 0,  5, 10, 15]])'''
  55. index = t.LongTensor([[3,2,1,0]]).t()       #取反对角线上的元素
  56. print(b.gather(1,index))
  57. '''''tensor([[ 3],
  58. [ 6],
  59. [ 9],
  60. [12]])'''
  61. index = t.LongTensor([[3,2,1,0]])           #取反对角线的元素,与上面不同
  62. print(b.gather(0,index))
  63. '''''tensor([[12,  9,  6,  3]])'''
  64. index = t.LongTensor([[0,1,2,3],[3,2,1,0]]).t()
  65. print(b.gather(1,index))
  66. '''''tensor([[ 0,  3],
  67. [ 5,  6],
  68. [10,  9],
  69. [15, 12]])'''
  70. '''''
  71. 与gather相对应的逆操作是scatter_,gather把数据从input中按index取出,而
  72. scatter_是把取出的数据再放回去,scatter_函数时inplace操作
  73. out = input.gather(dim,index)
  74. out = Tensor()
  75. out.scatter_(dim,index)
  76. '''
  77. x = t.rand(2, 5)
  78. print(x)
  79. c = t.zeros(3, 5).scatter_(0, t.LongTensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x)
  80. print(c)
  81. 2018-10-23 20:30:30

Tensor索引操作的更多相关文章

  1. Pytorch Tensor 常用操作

    https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor, ...

  2. pytorch(03)tensor的操作

    张量操作 一.张量的拼接 torch.cat() 功能:将张量按维度dim进行拼接,且[不会扩张张量的维度] tensors:张量序列 dim:要拼接的维度 torch.cat(tensors, di ...

  3. Mongodb学习笔记三(Mongodb索引操作及性能测试)

    第三章 索引操作及性能测试 索引在大数据下的重要性就不多说了 下面测试中用到了mongodb的一个客户端工具Robomongo,大家可以在网上选择下载.官网下载地址:http://www.robomo ...

  4. Elasticsearch-PHP 索引操作(转)

    索引操作 本节通过客户端来介绍一下索引API的各种操作.索引操作包含任何管理索引本身(例如,创建索引,删除索引,更改映射等等). 我们通过一些常见的操作的代码片段来介绍,然后在表格中列出剩下的方法.R ...

  5. ElasticSearch+Kibana 索引操作

    ElasticSearch+Kibana 索引操作 一 前言 ElasticiSearch 简介 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引 ...

  6. Mysql之表的操作与索引操作

    表的操作: 1.表的创建: create table if not exists table_name(字段定义); 例子: create table if not exists user(id in ...

  7. 3.Lucene3.x API分析,Director 索引操作目录,Document,分词器

     1  Lucene卡发包结构分析 包名 功能 org.apache.lucene.analysis Analysis提供自带的各种Analyzer org.apache.lucene.colla ...

  8. SQL Server死锁诊断--同一行数据在不同索引操作下引起的死锁

    死锁概述 对于数据库中出现的死锁,通俗地解释就是:不同Session(会话)持有一部分资源,并且同时相互排他性地申请对方持有的资源,然后双方都得不到自己想要的资源,从而造成的一种僵持的现象.当然,在任 ...

  9. 获取列表的索引操作:enumerate

    通过循环获取列表的索引操作: 主要使用:enumerate product_list = [['Iphone7',5800], ['Coffee',30], ['疙瘩汤',10], ['Python ...

随机推荐

  1. mysql存储引擎和索引

    正确的创建合适的索引,是提升数据库查询性能的基础. 第一章 mysql之索引 索引的定义:索引是为了加速对表中数据行的检索而创建的一种分散存储的数据结构. 我们为什么要使用索引: a.极大的减少存储引 ...

  2. spring cloud 集群健康监控--turbine-dashboard仪表盘

    这里仍然以Windows和jdk为运行环境,按照下面的步骤打包-运行-访问就能看到效果. 运维健康监控--hystrix-dashboard仪表盘 java -jar F:\jars-dashboar ...

  3. javascript 常用方法 解析URL,补充前导字符

    2018-11-7 20:41:20 星期三 1. 解析URL function parseUrl(url){ url = decodeURIComponent(url); var u = url.s ...

  4. 解释内存中的栈(stack)、堆(heap)和静态区(static area)的用法

    堆区:专门用来保存对象的实例(new 创建的对象和数组),实际上也只是保存对象实例的属性值,属性的类型和对象本身的类型标记等,并不保存对象的方法(方法是指令,保存在Stack中) 1.存储的全部是对象 ...

  5. css制作小标志

    空心箭头:示例图片 <b class="bottom"><i class="bottom-arrow1"></i><i ...

  6. Java数据类型与运算符

    Java 基本数据类型 Java 的两大数据类型: 内置数据类型 引用数据类型 内置数据类型 Java语言提供了八种基本类型.六种数字类型(四个整数型,两个浮点型),一种字符类型,还有一种布尔型. b ...

  7. sql 随笔更新

    SELECT DISTINCT(p.`id`), p.`id` , v.`full_name` , CONCAT(LEFT(v.mobile, 7), '****') , DATE_FORMAT(DA ...

  8. python 逻辑运算 ‘and’ ,'or' 在实战中的作用,代替if语句。

    彩票程序:课上方法:import random # 生成一个随机两位数 作为一个中奖号码luck_num = random.randint(10,99)print(luck_num)luck_num_ ...

  9. golang http.client 遇到了 Connection reset by peer 问题

    最近一个 golang 写的 http.client 的,获取远程服务器数据,有时候会报错,尤其在数量很大的时候,老是收到 Connection reset by peer 这样的 提醒,都有点想用重 ...

  10. 网站发布出现“未能找到路径“path\bin\roslyn\csc.exe”....“和拒绝访问的解决办法

    最近在2017上新建了一个MVC项目,发布是出现了各种奇怪的问题,其中一个错误是: 未能找到路径“path\bin\roslyn\csc.exe”.... 经过网上搜寻资料发现罪魁祸首就是NUGET里 ...