Cs231n课堂内容记录-Lecture 4-Part2 神经网络
Lecture 7 神经网络二
课程内容记录:https://zhuanlan.zhihu.com/p/21560667?refer=intelligentunit
1.协方差矩阵:
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),其中E(X)是X的期望值,X是变量值,公式中的E是期望值expected value的缩写,意为“变量值与其期望值之差的平方和”的期望值。离散型随机变量方差计算公式:
D(X)=E{[X-E(X)]^2}=E(X^2) - [E(X)]^2
当D(X)=E{[X-E(X)]^2}称为变量X的方差,而σ=(D(X))^0.5 称为标准差(或均方差)。它与X有相同的量纲。标准差是用来衡量一组数据的离散程度的统计量。
参见:https://www.cnblogs.com/terencezhou/p/6235974.html
参见:https://blog.csdn.net/mr_hhh/article/details/78490576
2.半正定矩阵:
半正定矩阵是正定矩阵的推广。实对称矩阵A称为半正定的,如果二次型X'AX半正定,即对于任意不为0的实列向量X,都有X'AX≥0。
3.主成分分析:(PCA)
参见:https://www.cnblogs.com/pinard/p/6239403.html
4.奇异值分解:
奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。
参见:https://www.cnblogs.com/pinard/p/6251584.html
参见:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
5.反向随机失活:
参见:https://blog.csdn.net/sinat_29957455/article/details/81023154
Cs231n课堂内容记录-Lecture 4-Part2 神经网络的更多相关文章
- Cs231n课堂内容记录-Lecture 5 卷积神经网络介绍
Lecture 5 CNN 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit 不错的总结笔记:https://blo ...
- Cs231n课堂内容记录-Lecture 4-Part1 反向传播及神经网络
反向传播 课程内容记录:https://zhuanlan.zhihu.com/p/21407711?refer=intelligentunit 雅克比矩阵(Jacobian matrix) 参见ht ...
- Cs231n课堂内容记录-Lecture 3 最优化
Lecture 4 最优化 课程内容记录: (上)https://zhuanlan.zhihu.com/p/21360434?refer=intelligentunit (下)https://zhua ...
- Cs231n课堂内容记录-Lecture 7 神经网络训练2
Lecture 7 Training Neural Networks 2 课堂笔记参见:https://zhuanlan.zhihu.com/p/21560667?refer=intelligent ...
- Cs231n课堂内容记录-Lecture 6 神经网络训练
Lecture 6 Training Neural Networks 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentun ...
- Cs231n课堂内容记录-Lecture 8 深度学习框架
Lecture 8 Deep Learning Software 课堂笔记参见:https://blog.csdn.net/u012554092/article/details/78159316 今 ...
- Cs231n课堂内容记录-Lecture 9 深度学习模型
Lecture 9 CNN Architectures 参见:https://blog.csdn.net/qq_29176963/article/details/82882080#GoogleNet_ ...
- Cs231n课堂内容记录-Lecture2-Part2 线性分类
Lecture 3 课程内容记录:(上)https://zhuanlan.zhihu.com/p/20918580?refer=intelligentunit (中)https://zhuanlan. ...
- Cs231n课堂内容记录-Lecture2-Part1 图像分类
Lecture 2 课程内容记录:(上)https://zhuanlan.zhihu.com/p/20894041?refer=intelligentunit (下)https://zhuanlan. ...
随机推荐
- Redis Windows下查看版本号
1.打开redis所在目录启动 redis-server 服务器端. 2.启动 redis-cli 客户端. 3.客户端输入:info 结果如下:
- SpringBoot配置 druid 数据源配置 慢SQL记录
spring: datasource: url: jdbc:mysql://127.0.0.12:3306/test?autoReconnect=true&useUnicode=true&am ...
- [Abp 源码分析]十六、后台作业与后台工作者
0. 简介 在某些时候我们可能会需要执行后台任务,或者是执行一些周期性的任务.比如说可能每隔 1 个小时要清除某个临时文件夹内的数据,可能用户会要针对某一个用户群来群发一组短信.前面这些就是典型的应用 ...
- 死磕 java集合之LinkedHashMap源码分析
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 简介 LinkedHashMap内部维护了一个双向链表,能保证元素按插入的顺序访问,也能以访问 ...
- java基础(十五)----- Java 最全异常详解 ——Java高级开发必须懂的
本文将详解java中的异常和异常处理机制 异常简介 什么是异常? 程序运行时,发生的不被期望的事件,它阻止了程序按照程序员的预期正常执行,这就是异常. Java异常的分类和类结构图 1.Java中的所 ...
- 纽约工作日志流水账 Day 1
周六早上8:00从青岛登机,历经17个小时,终于在当地时间周六下午2点半到达目的地纽约. 被媳妇吐槽旁边坐了美女妹子,其实是个美国妹子,旁边人家还有男朋友,全程只和我说了2句话,Exc ...
- 详解 Symbol 类型
ES5 的对象属性名都是字符串,这容易造成属性名的冲突.比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法(mixin 模式),新方法的名字就有可能与现有方法产生冲突.如果有一种机制,保证 ...
- 环境与工具1:微信群刷屏 | itchat
在微信群里面,"刷屏"的行为是被谴责的,伴随着"快发红包道歉"与"送飞机票"的出现.那如果小程硬是要做到"刷屏"来验证自 ...
- 深入浅出ASP.NET Core系列(入门篇)
入门篇 1.1.专题介绍 1.2.环境安装 1.3.创建项目 1.4部署到IIS 1.5准备CentOS和Nginx环境 1.6部署到CentOS 2.1命令行和JSON的配置 2.2Bind建立配置 ...
- ubuntu 15.10 设置静态ip 分配固定ip 设置dns 设置网关 命令行配置ip 固定ip不生效怎么办
要用到的文件: 配置接口信息 /etc/network/interfaces 配置内容: auto eth0 iface eth0 inet static address 192.168.216.18 ...