Cs231n课堂内容记录-Lecture 4-Part2 神经网络
Lecture 7 神经网络二
课程内容记录:https://zhuanlan.zhihu.com/p/21560667?refer=intelligentunit
1.协方差矩阵:
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),其中E(X)是X的期望值,X是变量值,公式中的E是期望值expected value的缩写,意为“变量值与其期望值之差的平方和”的期望值。离散型随机变量方差计算公式:
D(X)=E{[X-E(X)]^2}=E(X^2) - [E(X)]^2
当D(X)=E{[X-E(X)]^2}称为变量X的方差,而σ=(D(X))^0.5 称为标准差(或均方差)。它与X有相同的量纲。标准差是用来衡量一组数据的离散程度的统计量。
参见:https://www.cnblogs.com/terencezhou/p/6235974.html
参见:https://blog.csdn.net/mr_hhh/article/details/78490576
2.半正定矩阵:
半正定矩阵是正定矩阵的推广。实对称矩阵A称为半正定的,如果二次型X'AX半正定,即对于任意不为0的实列向量X,都有X'AX≥0。
3.主成分分析:(PCA)
参见:https://www.cnblogs.com/pinard/p/6239403.html
4.奇异值分解:
奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。
参见:https://www.cnblogs.com/pinard/p/6251584.html
参见:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
5.反向随机失活:
参见:https://blog.csdn.net/sinat_29957455/article/details/81023154
Cs231n课堂内容记录-Lecture 4-Part2 神经网络的更多相关文章
- Cs231n课堂内容记录-Lecture 5 卷积神经网络介绍
Lecture 5 CNN 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit 不错的总结笔记:https://blo ...
- Cs231n课堂内容记录-Lecture 4-Part1 反向传播及神经网络
反向传播 课程内容记录:https://zhuanlan.zhihu.com/p/21407711?refer=intelligentunit 雅克比矩阵(Jacobian matrix) 参见ht ...
- Cs231n课堂内容记录-Lecture 3 最优化
Lecture 4 最优化 课程内容记录: (上)https://zhuanlan.zhihu.com/p/21360434?refer=intelligentunit (下)https://zhua ...
- Cs231n课堂内容记录-Lecture 7 神经网络训练2
Lecture 7 Training Neural Networks 2 课堂笔记参见:https://zhuanlan.zhihu.com/p/21560667?refer=intelligent ...
- Cs231n课堂内容记录-Lecture 6 神经网络训练
Lecture 6 Training Neural Networks 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentun ...
- Cs231n课堂内容记录-Lecture 8 深度学习框架
Lecture 8 Deep Learning Software 课堂笔记参见:https://blog.csdn.net/u012554092/article/details/78159316 今 ...
- Cs231n课堂内容记录-Lecture 9 深度学习模型
Lecture 9 CNN Architectures 参见:https://blog.csdn.net/qq_29176963/article/details/82882080#GoogleNet_ ...
- Cs231n课堂内容记录-Lecture2-Part2 线性分类
Lecture 3 课程内容记录:(上)https://zhuanlan.zhihu.com/p/20918580?refer=intelligentunit (中)https://zhuanlan. ...
- Cs231n课堂内容记录-Lecture2-Part1 图像分类
Lecture 2 课程内容记录:(上)https://zhuanlan.zhihu.com/p/20894041?refer=intelligentunit (下)https://zhuanlan. ...
随机推荐
- [Abp 源码分析]六、工作单元的实现
0.简介 在 Abp 框架内部实现了工作单元,在这里讲解一下,什么是工作单元? Unit Of Work(工作单元)模式用来维护一个由已经被业务事物修改(增加.删除或更新)的业务对象组成的列表.Uni ...
- java 网络通信传输层协议——UDP和TCP
本文原文由作者“zskingking”发表于:jianshu.com/p/271b1c57bb0b,本次收录有改动. 1.点评 互联网发展至今已经高度发达,而对于互联网应用(尤其即时通讯网专注的即时通 ...
- MVC从Controller到View的呈现
图说MVC底层运行机制: 当路由机制已经激活Controller并InvokeAction后,如果返回的是View, 则ViewResult基于View呈现的请求响应机制内部借助MVC提供的View引 ...
- Nancy in .Net Core学习笔记 - 视图引擎
前文中我们介绍了Nancy中的路由,这一篇我们来介绍一下Nancy中的视图引擎. Nancy中如何返回一个视图(View) 在ASP.NET Mvc中,我们使用ViewResult类来返回一个视图.N ...
- 系列文章|OKR与敏捷(一):瀑布式目标与敏捷的冲突
OKR与敏捷开发的原理有着相似之处,但已经使用敏捷的团队再用OKR感觉会显得多余.这种误解的根源就在于对这两种模式不够了解,运用得当的情况下,OKR和敏捷可以形成强强联合的效果,他们可以创造出以价值为 ...
- 阿里注册中心nacos使用整合Dubbo-原创
阿里注册中心nacos是今年开源的框架,一开始以为就是个zk.后面看了图才明白他对标的竟然是consul\eureka,最重要是完美支持dubbo.我想今年开源它也是别有用意 .(目前nacos0.7 ...
- Spring Cloud学习笔记-011
分布式配置中心:安全保护 由于配置中心存储的内容比较敏感,做一定的安全处理是必需的.为配置中心实现安全保护的方式有很多,比如物理网络限制.OAuth2授权等.由于微服务应用和配置中心都构建与Sprin ...
- web进修之—Hibernate 关系映射(3)
概述 Hibernate的关系映射是Hibernate使用的难点或者是重点(别担心,不考试哦~),按照不同的分类方式可以对这些映射关系做一个分类,如: 按对象对应关系分: 一对一 多对一/一对多 多对 ...
- jmeter 分布式压测(windows)
单台压测机通常会遇到客户端瓶颈,受制于客户机的性能.可能由于网络带宽,CPU,内存的限制不能给到服务器足够的压力,这个时候你就需要用到分布式方案来解决客户机的瓶颈,压测的结果也会更加接近于真实情况. ...
- SSH隧道:端口转发功能详解
SSH系列文章: SSH基础:SSH和SSH服务 SSH转发代理:ssh-agent用法详解 SSH隧道:端口转发功能详解 1.1 ssh安全隧道(一):本地端口转发 如下图,假如host3和host ...