一、前述

Spark中默认有两大类算子,Transformation(转换算子),懒执行。action算子,立即执行,有一个action算子 ,就有一个job。

通俗些来说由RDD变成RDD就是Transformation算子,由RDD转换成其他的格式就是Action算子。

二、常用Transformation算子

假设数据集为此:

1、filter

     过滤符合条件的记录数,true保留,false过滤掉。

Java版:

package com.spark.spark.transformations;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
/**
* filter
* 过滤符合符合条件的记录数,true的保留,false的过滤掉。
*
*/
public class Operator_filter {
public static void main(String[] args) {
/**
* SparkConf对象中主要设置Spark运行的环境参数。
* 1.运行模式
* 2.设置Application name
* 3.运行的资源需求
*/
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("filter");
/**
* JavaSparkContext对象是spark运行的上下文,是通往集群的唯一通道。
*/
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> resultRDD = lines.filter(new Function<String, Boolean>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Boolean call(String line) throws Exception {
return !line.contains("hadoop");//这里是不等于
} }); resultRDD.foreach(new VoidFunction<String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(String line) throws Exception {
System.out.println(line);
}
});
jsc.stop();
}
}

scala版:

函数解释:

进来一个String,出去一个Booean.

结果:

 2、map

将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素。

特点:输入一条,输出一条数据。

/**
* map
* 通过传入的函数处理每个元素,返回新的数据集。
* 特点:输入一条,输出一条。
*
*
* @author root
*
*/
public class Operator_map {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("map");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> line = jsc.textFile("./words.txt");
JavaRDD<String> mapResult = line.map(new Function<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public String call(String s) throws Exception {
return s+"~";
}
}); mapResult.foreach(new VoidFunction<String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(String t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数解释:

进来一个String,出去一个String。

函数结果:

 

 3、flatMap(压扁输出,输入一条,输出零到多条)

先map后flat。与map类似,每个输入项可以映射为0到多个输出项。

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction; /**
* flatMap
* 输入一条数据,输出0到多条数据。
* @author root
*
*/
public class Operator_flatMap {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("flatMap"); JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMapResult = lines.flatMap(new FlatMapFunction<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String s) throws Exception { return Arrays.asList(s.split(" "));
} });
flatMapResult.foreach(new VoidFunction<String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(String t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数解释:

进来一个String,出去一个集合。

Iterater 集合
iterator 遍历元素

函数结果:

4、sample(随机抽样)

随机抽样算子,根据传进去的小数按比例进行又放回或者无放回的抽样。(True,fraction,long)

True 抽样放回

Fraction 一个比例 float 大致 数据越大 越准确

第三个参数:随机种子,抽到的样本一样 方便测试

package com.spark.spark.transformations;

import java.util.ArrayList;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class Operator_sample {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("sample"); JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaPairRDD<String, Integer> flatMapToPair = lines.flatMapToPair(new PairFlatMapFunction<String, String, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<Tuple2<String, Integer>> call(String t)
throws Exception {
List<Tuple2<String,Integer>> tupleList = new ArrayList<Tuple2<String,Integer>>();
tupleList.add(new Tuple2<String,Integer>(t,1));
return tupleList;
}
});
JavaPairRDD<String, Integer> sampleResult = flatMapToPair.sample(true,0.3,4);//样本有7个所以大致抽样为1-2个
sampleResult.foreach(new VoidFunction<Tuple2<String,Integer>>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数结果:

 5.reduceByKey

将相同的Key根据相应的逻辑进行处理。

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class Operator_reduceByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("reduceByKey");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMap = lines.flatMap(new FlatMapFunction<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
JavaPairRDD<String, Integer> mapToPair = flatMap.mapToPair(new PairFunction<String, String, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String t) throws Exception {
return new Tuple2<String,Integer>(t,1);
} }); JavaPairRDD<String, Integer> reduceByKey = mapToPair.reduceByKey(new Function2<Integer,Integer,Integer>(){ /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
} },10);
reduceByKey.foreach(new VoidFunction<Tuple2<String,Integer>>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数解释:

函数结果:

 

6、sortByKey/sortBy

作用在K,V格式的RDD上,对key进行升序或者降序排序。

Sortby在java中没有

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class Operator_sortByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("sortByKey");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMap = lines.flatMap(new FlatMapFunction<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
JavaPairRDD<String, Integer> mapToPair = flatMap.mapToPair(new PairFunction<String, String, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String, Integer>(s, 1);
}
}); JavaPairRDD<String, Integer> reduceByKey = mapToPair.reduceByKey(new Function2<Integer, Integer, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
});
reduceByKey.mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> t)
throws Exception {
return new Tuple2<Integer, String>(t._2, t._1);
}
}).sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer,String>, String, Integer>() {//先把key.value对调,然后排完序后再对调回来 false是降序,True是升序 /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> t)
throws Exception {
return new Tuple2<String,Integer>(t._2,t._1);
}
}).foreach(new VoidFunction<Tuple2<String,Integer>>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
});
}
}

代码解释:先对调,排完序,在对调过来

代码结果:

【Spark篇】---Spark中Transformations转换算子的更多相关文章

  1. Spark—RDD编程常用转换算子代码实例

    Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]  ...

  2. Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)

    一:准备数据源     在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...

  3. HBase读写的几种方式(二)spark篇

    1. HBase读写的方式概况 主要分为: 纯Java API读写HBase的方式: Spark读写HBase的方式: Flink读写HBase的方式: HBase通过Phoenix读写的方式: 第一 ...

  4. Spark调研笔记第6篇 - Spark编程实战FAQ

    本文主要记录我使用Spark以来遇到的一些典型问题及其解决的方法,希望对遇到相同问题的同学们有所帮助. 1. Spark环境或配置相关 Q: Sparkclient配置文件spark-defaults ...

  5. 【转帖】HBase读写的几种方式(二)spark篇

    HBase读写的几种方式(二)spark篇 https://www.cnblogs.com/swordfall/p/10517177.html 分类: HBase undefined 1. HBase ...

  6. spark教程(四)-SparkContext 和 RDD 算子

    SparkContext SparkContext 是在 spark 库中定义的一个类,作为 spark 库的入口点: 它表示连接到 spark,在进行 spark 操作之前必须先创建一个 Spark ...

  7. Spark中文指南(入门篇)-Spark编程模型(一)

    前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark ...

  8. 【转载】Spark学习——spark中的几个概念的理解及参数配置

    首先是一张Spark的部署图: 节点类型有: 1. master 节点: 常驻master进程,负责管理全部worker节点.2. worker 节点: 常驻worker进程,负责管理executor ...

  9. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

随机推荐

  1. 利用阿里云搭建frp实现外网远程桌面链接内网电脑

    主要应用场景:针对学生放假回家使用外网无法远程操作学校的服务器或者电脑,这里通过阿里云的云服务器搭建一个frp服务,实现内网穿透,从而可以直接通过远程桌面或者其他工具实现对校园网内的服务器或者电脑进行 ...

  2. 我的Python笔记补充:入门知识拾遗

    声明:本文整理借鉴金角大王的Python之路,Day1 - Python基础1,仅供本人学习使用!!! 入门知识拾遗 一.bytes类型 二.三元运算 1 result = 值1 if 条件 else ...

  3. linux - word frequency

    linux  输出某个文件的单词出现频率 解决方式 cat words.txt |awk '{for(i=1;i<=NF;i++) print $i;}'|sort|uniq -c|sort - ...

  4. 在Linux(Centos7)系统上对进行Hadoop分布式配置以及运行Hadoop伪分布式实例

    在Linux(Centos7)系统上对进行Hadoop分布式配置以及运行Hadoop伪分布式实例                                                     ...

  5. unity下贴图混合(Texture Blending)

    在unity制作自定义时,经常会遇到自定义妆容等问题,美术会提供大量的眉毛/胡子/腮红等贴图,来供用户选择. 美术给出的眉毛的小贴图如下: 在用户选用不同的胡子眉毛,可以将选定的小贴图和皮肤base贴 ...

  6. 【redis】在windos下的redis服务器的搭建

    1.下载Redis-x64-3.2.100(楼主用的版本,需要安装包的可以找我要) 下载官方版本 2.解压后在cmd下运行 redis-server redis.windos.conf 此时redis ...

  7. pyenv global 设置失败 pyenv local 设置就成功了 不知道啥原因

    dev@PC-20190309QPVT:/mnt/c/data/htdocs/python/flaskr$ pyenv global 3.6.1dev@PC-20190309QPVT:/mnt/c/d ...

  8. 菜鸟安卓学习路——更强大的滚动控件--RecycleView

  9. VMware Workstation Pro下载密钥

    热门虚拟机软件VMware Workstation Pro现已更新至14.1.2,14.0主要更新了诸多客户机操作系统版本,此外全面兼容Wind10创建者更新.12.0之后属于大型更新,专门为Win1 ...

  10. java 新手指南

    Java新手指南 不小心走上了一条不归路的我 因为对可视化感兴趣,然后学了MFC,发现MFC好麻烦啊,不如开发APP吧,刚学开发APP,艹,居然是用java做开发,那只好学java了,,呜呜,不知道什 ...