一、前述

Spark中默认有两大类算子,Transformation(转换算子),懒执行。action算子,立即执行,有一个action算子 ,就有一个job。

通俗些来说由RDD变成RDD就是Transformation算子,由RDD转换成其他的格式就是Action算子。

二、常用Transformation算子

假设数据集为此:

1、filter

     过滤符合条件的记录数,true保留,false过滤掉。

Java版:

package com.spark.spark.transformations;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
/**
* filter
* 过滤符合符合条件的记录数,true的保留,false的过滤掉。
*
*/
public class Operator_filter {
public static void main(String[] args) {
/**
* SparkConf对象中主要设置Spark运行的环境参数。
* 1.运行模式
* 2.设置Application name
* 3.运行的资源需求
*/
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("filter");
/**
* JavaSparkContext对象是spark运行的上下文,是通往集群的唯一通道。
*/
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> resultRDD = lines.filter(new Function<String, Boolean>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Boolean call(String line) throws Exception {
return !line.contains("hadoop");//这里是不等于
} }); resultRDD.foreach(new VoidFunction<String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(String line) throws Exception {
System.out.println(line);
}
});
jsc.stop();
}
}

scala版:

函数解释:

进来一个String,出去一个Booean.

结果:

 2、map

将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素。

特点:输入一条,输出一条数据。

/**
* map
* 通过传入的函数处理每个元素,返回新的数据集。
* 特点:输入一条,输出一条。
*
*
* @author root
*
*/
public class Operator_map {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("map");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> line = jsc.textFile("./words.txt");
JavaRDD<String> mapResult = line.map(new Function<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public String call(String s) throws Exception {
return s+"~";
}
}); mapResult.foreach(new VoidFunction<String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(String t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数解释:

进来一个String,出去一个String。

函数结果:

 

 3、flatMap(压扁输出,输入一条,输出零到多条)

先map后flat。与map类似,每个输入项可以映射为0到多个输出项。

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction; /**
* flatMap
* 输入一条数据,输出0到多条数据。
* @author root
*
*/
public class Operator_flatMap {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("flatMap"); JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMapResult = lines.flatMap(new FlatMapFunction<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String s) throws Exception { return Arrays.asList(s.split(" "));
} });
flatMapResult.foreach(new VoidFunction<String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(String t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数解释:

进来一个String,出去一个集合。

Iterater 集合
iterator 遍历元素

函数结果:

4、sample(随机抽样)

随机抽样算子,根据传进去的小数按比例进行又放回或者无放回的抽样。(True,fraction,long)

True 抽样放回

Fraction 一个比例 float 大致 数据越大 越准确

第三个参数:随机种子,抽到的样本一样 方便测试

package com.spark.spark.transformations;

import java.util.ArrayList;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class Operator_sample {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("sample"); JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaPairRDD<String, Integer> flatMapToPair = lines.flatMapToPair(new PairFlatMapFunction<String, String, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<Tuple2<String, Integer>> call(String t)
throws Exception {
List<Tuple2<String,Integer>> tupleList = new ArrayList<Tuple2<String,Integer>>();
tupleList.add(new Tuple2<String,Integer>(t,1));
return tupleList;
}
});
JavaPairRDD<String, Integer> sampleResult = flatMapToPair.sample(true,0.3,4);//样本有7个所以大致抽样为1-2个
sampleResult.foreach(new VoidFunction<Tuple2<String,Integer>>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数结果:

 5.reduceByKey

将相同的Key根据相应的逻辑进行处理。

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class Operator_reduceByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("reduceByKey");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMap = lines.flatMap(new FlatMapFunction<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
JavaPairRDD<String, Integer> mapToPair = flatMap.mapToPair(new PairFunction<String, String, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String t) throws Exception {
return new Tuple2<String,Integer>(t,1);
} }); JavaPairRDD<String, Integer> reduceByKey = mapToPair.reduceByKey(new Function2<Integer,Integer,Integer>(){ /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
} },10);
reduceByKey.foreach(new VoidFunction<Tuple2<String,Integer>>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
}); jsc.stop();
}
}

函数解释:

函数结果:

 

6、sortByKey/sortBy

作用在K,V格式的RDD上,对key进行升序或者降序排序。

Sortby在java中没有

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class Operator_sortByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("sortByKey");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMap = lines.flatMap(new FlatMapFunction<String, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
JavaPairRDD<String, Integer> mapToPair = flatMap.mapToPair(new PairFunction<String, String, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String, Integer>(s, 1);
}
}); JavaPairRDD<String, Integer> reduceByKey = mapToPair.reduceByKey(new Function2<Integer, Integer, Integer>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
});
reduceByKey.mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> t)
throws Exception {
return new Tuple2<Integer, String>(t._2, t._1);
}
}).sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer,String>, String, Integer>() {//先把key.value对调,然后排完序后再对调回来 false是降序,True是升序 /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> t)
throws Exception {
return new Tuple2<String,Integer>(t._2,t._1);
}
}).foreach(new VoidFunction<Tuple2<String,Integer>>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
});
}
}

代码解释:先对调,排完序,在对调过来

代码结果:

【Spark篇】---Spark中Transformations转换算子的更多相关文章

  1. Spark—RDD编程常用转换算子代码实例

    Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]  ...

  2. Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)

    一:准备数据源     在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...

  3. HBase读写的几种方式(二)spark篇

    1. HBase读写的方式概况 主要分为: 纯Java API读写HBase的方式: Spark读写HBase的方式: Flink读写HBase的方式: HBase通过Phoenix读写的方式: 第一 ...

  4. Spark调研笔记第6篇 - Spark编程实战FAQ

    本文主要记录我使用Spark以来遇到的一些典型问题及其解决的方法,希望对遇到相同问题的同学们有所帮助. 1. Spark环境或配置相关 Q: Sparkclient配置文件spark-defaults ...

  5. 【转帖】HBase读写的几种方式(二)spark篇

    HBase读写的几种方式(二)spark篇 https://www.cnblogs.com/swordfall/p/10517177.html 分类: HBase undefined 1. HBase ...

  6. spark教程(四)-SparkContext 和 RDD 算子

    SparkContext SparkContext 是在 spark 库中定义的一个类,作为 spark 库的入口点: 它表示连接到 spark,在进行 spark 操作之前必须先创建一个 Spark ...

  7. Spark中文指南(入门篇)-Spark编程模型(一)

    前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark ...

  8. 【转载】Spark学习——spark中的几个概念的理解及参数配置

    首先是一张Spark的部署图: 节点类型有: 1. master 节点: 常驻master进程,负责管理全部worker节点.2. worker 节点: 常驻worker进程,负责管理executor ...

  9. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

随机推荐

  1. HTTP/1.1 chunked 解码

    0.简介 1.定义 RFC定义 https://tools.ietf.org/html/rfc2616#section-3.6.1 Chunked-Body = *chunk last-chunk t ...

  2. CentOS6.x 下 /etc/security/limits.conf 被改错的故障经历

    Intro 我司本小厂,每个员工都是身兼数职,所以开发人员直接登录线上服务器改东西是常态.有些开发人员,自持水平较高(的确水平也是较高,但缺乏对系统的敬畏),所以总是越俎代庖,改一些本身应该是线上运维 ...

  3. 【Linux】如何在Linux上安装使用SSH

    SSH是什么? Secure Shell 安全外壳协议 建立在应用层基础上的安全协议 可靠,专为远程登录会话和其他网络服务提供安全性的协议 有效防止远程管理过程中的信息泄露问题 SSH客户端适用于多种 ...

  4. python2用pip进行安装时报错Fatalerrorinlauncher:Unabletocreateprocessusing"

    win10下python3和python2共存环境 用pip安装一个包执行pip2 install xxx的时候报错Fatal error in launcher: Unable to create ...

  5. ISP PIPLINE (十五) AF

    主流的AF: CDAF, PDAF, laser assist AF(这个只是辅助,在微距或者拍摄纹理不明显的场景下好用). AF的大致原理就是检测图像锐度或者等价于锐度的参数,推动马达实现合焦或者对 ...

  6. 第六章 对象-javaScript权威指南第六版

    什么是对象? 对象是一种复合值,每一个属性都是都是一个名/值对.原型式继承是javaScript的核心特征. 对象常见的用法有,create\set\query\delete\test\enumera ...

  7. 使用snap

    snap是一个Linux上的包管理器,其目的是提供跨平台的包管理 提到包管理我们会想到python的 pip conda等,以及 apt等等 snap提供了一个 统一的体验在各种Linux发行版上 关 ...

  8. [git]checkout&branch

    git branch 和 git checkout经常在一起使用,所以在此将它们合在一起 1.Git branch 一般用于分支的操作,比如创建分支,查看分支等等, 1.1 git branch 不带 ...

  9. today-Extension widget 扩展开发

    设置UI部分的展开和收起

  10. 文件操作,列表实例NiceHexSpiral

    fr = open('letter.txt',mode='r',encoding='utf-8') plaincode = fr.read() print('明文:' + plaincode) pri ...