大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试。如果我们是自己的图片数据,又该怎么做呢?

一、我的数据

我在学习的时候,使用的是fashion-mnist。这个数据比较小,我的电脑没有GPU,还能吃得消。关于fashion-mnist数据,可以百度,也可以 点此 了解一下,数据就像这个样子:

下载地址:https://github.com/zalandoresearch/fashion-mnist

但是下载下来是一种二进制文件,并不是图片,因此我先转换成了图片。

我先解压gz文件到e:/fashion_mnist/文件夹

然后运行代码:

import os
from skimage import io
import torchvision.datasets.mnist as mnist root="E:/fashion_mnist/"
train_set = (
mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
)
test_set = (
mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
)
print("training set :",train_set[0].size())
print("test set :",test_set[0].size()) def convert_to_img(train=True):
if(train):
f=open(root+'train.txt','w')
data_path=root+'/train/'
if(not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
img_path=data_path+str(i)+'.jpg'
io.imsave(img_path,img.numpy())
f.write(img_path+' '+str(label)+'\n')
f.close()
else:
f = open(root + 'test.txt', 'w')
data_path = root + '/test/'
if (not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
img_path = data_path+ str(i) + '.jpg'
io.imsave(img_path, img.numpy())
f.write(img_path + ' ' + str(label) + '\n')
f.close() convert_to_img(True)
convert_to_img(False)

这样就会在e:/fashion_mnist/目录下分别生成train和test文件夹,用于存放图片。还在该目录下生成了标签文件train.txt和test.txt.

二、进行CNN分类训练和测试

先要将图片读取出来,准备成torch专用的dataset格式,再通过Dataloader进行分批次训练。

代码如下:

import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/" # -----------------ready the dataset--------------------------
def default_loader(path):
return Image.open(path).convert('RGB')
class MyDataset(Dataset):
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
fh = open(txt, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0],int(words[1])))
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader def __getitem__(self, index):
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img)
return img,label def __len__(self):
return len(self.imgs) train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64) #-----------------create the Net and training------------------------ class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.conv2 = torch.nn.Sequential(
torch.nn.Conv2d(32, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(64, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.dense = torch.nn.Sequential(
torch.nn.Linear(64 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
) def forward(self, x):
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
res = conv3_out.view(conv3_out.size(0), -1)
out = self.dense(res)
return out model = Net()
print(model) optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss() for epoch in range(10):
print('epoch {}'.format(epoch + 1))
# training-----------------------------
train_loss = 0.
train_acc = 0.
for batch_x, batch_y in train_loader:
batch_x, batch_y = Variable(batch_x), Variable(batch_y)
out = model(batch_x)
loss = loss_func(out, batch_y)
train_loss += loss.data[0]
pred = torch.max(out, 1)[1]
train_correct = (pred == batch_y).sum()
train_acc += train_correct.data[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
train_data)), train_acc / (len(train_data)))) # evaluation--------------------------------
model.eval()
eval_loss = 0.
eval_acc = 0.
for batch_x, batch_y in test_loader:
batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
out = model(batch_x)
loss = loss_func(out, batch_y)
eval_loss += loss.data[0]
pred = torch.max(out, 1)[1]
num_correct = (pred == batch_y).sum()
eval_acc += num_correct.data[0]
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
test_data)), eval_acc / (len(test_data))))

打印出来的网络模型:

训练和测试结果:

pytorch: 准备、训练和测试自己的图片数据的更多相关文章

  1. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  2. caffe学习系列(2):训练和测试自己的图片

    参考:http://www.cnblogs.com/denny402/p/5083300.html 上述主要介绍的是从自己的原始图片转为lmdb数据,再到训练.测试的整个流程(另外可参考薛开宇的笔记) ...

  3. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  4. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  5. 使用LeNet训练自己的手写图片数据

    一.前言 本文主要尝试将自己的数据集制作成lmdb格式,送进lenet作训练和测试,参考了http://blog.csdn.net/liuweizj12/article/details/5214974 ...

  6. 用python制作训练集和测试集的图片名列表文本

    # -*- coding: utf-8 -*- from pathlib import Path #从pathlib中导入Path import os import fileinput import ...

  7. Ubuntu16.04下caffe CPU版的图片训练和测试

    一 数据准备 二.转换为lmdb格式 1.首先,在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件.然后编写一个脚本create_filelist.sh,用来生成train ...

  8. 随机切分csv训练集和测试集

    使用numpy切分训练集和测试集 觉得有用的话,欢迎一起讨论相互学习~Follow Me 序言 在机器学习的任务中,时常需要将一个完整的数据集切分为训练集和测试集.此处我们使用numpy完成这个任务. ...

  9. Windows下mnist数据集caffemodel分类模型训练及测试

    1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和1000 ...

随机推荐

  1. this指向及改变this指向的方法

    一.函数的调用方式决定了 this 的指向不同,但总的原则,this指的是调用函数的那个对象: 1.普通函数调用,此时 this 指向 全局对象window function fn() { conso ...

  2. Python程序的执行过程原理(解释型语言和编译型语言)

    Python是一门解释型语言?我初学Python时,听到的关于Python的第一句话就是Python是一门解释型语言,我就这样一直相信下去,直到发现.pyc文件的存在,如果真是解释型语言,那么生成的. ...

  3. python接口自动化1

    组织架构: 包括配置文件,反射.文件路径.Excel操作.测试报告生成 case.config [MODE] file_name=case_data.xlsx mode={"register ...

  4. 如何从Eclipse导入github上的项目源码--转载

    [转载出处声明:hil2000的专栏] 1.首先在github.com上申请一个账号,比如笔者的账号为puma0072.Eclipse需要安装egit插件,在Eclipse中选择help->Ma ...

  5. Spring IoC的原理为什么是反射而不是new

    因为Spring在加载类的实例时,我们知道其实是用工厂的方式,给出一个个实例,而在工厂里面,用了单例,但是真正实例化,则是反射的newInstance来创建对象,而不是new. 那么,为什么是反射的n ...

  6. CF1097G Vladislav and a Great Legend

    传送门 题目大意 一棵$n$个点的树,一个点集$S$的权值定义为把这个点击连成一个联通块的最少边数,求: $$ans=\sum_{S\in U}f(S)^k$$ 题解 这题跟gdoi那道题差不多 先把 ...

  7. 离校登记网页项目个人总结(Alpha阶段)

    个人小结 在Alpha阶段,我和我的小团队六人,经过六天的努力完成了我们最初需求分析里的基本功能,在这里为我们团队的成功表示祝贺.在这个过程中,对于自己的表现觉得既有做的好的方面,也有很多不足需要改进 ...

  8. 使用IDEA时跳转到.class的解决办法

    项目背景:jdk1.8 软件环境:IDEA 问题: 1. 两个不同的项目,在A项目中写了一个实体类.B项目中引用.在B项目中CTRL+鼠标左键点击进入,正常情况下是进入了源码文件,也就是.JAVA文件 ...

  9. Tips_信息列表(手风琴)效果的多种实现方法

    效果图: 一.纯CSS实现 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  10. Docker-Compose入门

    转:https://blog.csdn.net/chinrui/article/details/79155688