edu9E. Thief in a Shop
题意:n个物品每个价值a[i],要求选k个,可以重复,问能取到哪几个价值
题解:fft裸题.但是直接一次fft,然后快速幂会boom.这样是严格的\(2^{20}*log2(2^{20})*log(w)\).需要在快速幂里fft,每次取最大的2的次幂,然后fft也boom了,不知道是不是写搓了.ntt过了.....
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=1000000+10,maxn=1000000+10,inf=0x3f3f3f3f;
ll x[N<<3],y[N<<3];
int rev[N<<3];
void getrev(int bit)
{
for(int i=0;i<(1<<bit);i++)
rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
}
void ntt(ll *a,int n,int dft)
{
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int step=1;step<n;step<<=1)
{
ll wn=qp(3,(mod-1)/(step*2));
if(dft==-1)wn=qp(wn,mod-2);
for(int j=0;j<n;j+=step<<1)
{
ll wnk=1;
for(int k=j;k<j+step;k++)
{
ll x=a[k];
ll y=wnk*a[k+step]%mod;
a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
wnk=wnk*wn%mod;
}
}
}
if(dft==-1)
{
ll inv=qp(n,mod-2);
for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
}
}
void solve(int k,int p)
{
int sz=0;while((1<<sz)<=p)sz++;sz++;
getrev(sz);
ntt(y,(1<<sz),1);
if(k&1)
{
ntt(x,(1<<sz),1);
for(int i=0;i<(1<<sz);i++)x[i]=x[i]*y[i]%mod;
ntt(x,(1<<sz),-1);
for(int i=0;i<(1<<sz);i++)if(x[i])x[i]=1;
}
for(int i=0;i<(1<<sz);i++)y[i]=y[i]*y[i]%mod;
ntt(y,(1<<sz),-1);
for(int i=0;i<(1<<sz);i++)if(y[i])y[i]=1;
}
int main()
{
int n,k,ma=0;scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
int a;scanf("%d",&a);
y[a]+=1;ma=max(ma,a);
}
x[0]=1;
while(k)solve(k,ma),k>>=1,ma<<=1;
for(int i=1;i<N;i++)if(x[i]!=0)printf("%d ",i);
return 0;
}
/********************
********************/
edu9E. Thief in a Shop的更多相关文章
- codeforces 632+ E. Thief in a Shop
E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input standard ...
- codeforces 632E. Thief in a Shop fft
题目链接 E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input stan ...
- C - Thief in a Shop - dp完全背包-FFT生成函数
C - Thief in a Shop 思路 :严格的控制好k的这个数量,这就是个裸完全背包问题.(复杂度最极端会到1e9) 他们随意原来随意组合的方案,与他们都减去 最小的 一个 a[ i ] 组合 ...
- codeforces Educational Codeforces Round 9 E - Thief in a Shop
E - Thief in a Shop 题目大意:给你n ( n <= 1000)个物品每个物品的价值为ai (ai <= 1000),你只能恰好取k个物品,问你能组成哪些价值. 思路:我 ...
- Educational Codeforces Round 9 E. Thief in a Shop dp fft
E. Thief in a Shop 题目连接: http://www.codeforces.com/contest/632/problem/E Description A thief made hi ...
- Educational Codeforces Round 9 E. Thief in a Shop NTT
E. Thief in a Shop A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...
- CF632E Thief in a Shop 和 CF958F3 Lightsabers (hard)
Thief in a Shop n个物品每个价值ai,要求选k个,可以重复.问能取到哪几个价值? 1 ≤ n, k ≤ 1000,1 ≤ ai ≤ 1000 题解 将选一个物品能取到的价值的01生成函 ...
- Codeforces632E Thief in a Shop(NTT + 快速幂)
题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...
- CF632E: Thief in a Shop(快速幂+NTT)(存疑)
A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...
随机推荐
- 安装Oracle Grid的过程中用到的几个小技巧
1.利用文件来模拟块设备 在grid的安装教程中有一步是 provision the disk devices for use with ASM Filter Driver.但是如果我们没有多个磁盘怎 ...
- 从拥抱开源到回馈开源,灵雀云助力CNCF中国区培训业务
6月27日,全球首屈一指的开源盛会 2018 LinuxCon + ContainerCon + CloudOpen China (LC3)在中国北京国家会议中心落下帷幕.二度落地中国的LC3大会热度 ...
- 轻量级集群管理软件-Ansible
ansible概述和运行机制 ansible概述 Ansible是一款为类Unix系统开发的自由开源的配置和自动化工具, 它用Python写成,类似于saltstack和Puppet,但是有一个不同 ...
- redis 有序集合(zset)函数
redis 有序集合(zset)函数 zAdd 命令/方法/函数 Adds the specified member with a given score to the sorted set stor ...
- t-SNE完整笔记
http://www.datakit.cn/blog/2017/02/05/t_sne_full.html t-SNE(t-distributed stochastic neighbor embedd ...
- WPF Combobox数据绑定 Binding
combobox数据绑定List链表集合区分显示值与选择的值 整体效果: 根据combobox选择情况分别打印选取值与显示值 代码: Windows窗体: <Window x:Class=&qu ...
- IO流(三)
五.Java序列化 概述 Java序列化是指把Java对象转换为字节序列的过程 Java反序列化是指把字节序列恢复为Java对象的过程 当两个Java进程进行通信时,发送方需要把这个Java对象转换为 ...
- GO语言从入门到放弃目录
GO语言基础 第一个GO程序 GO语言常量和变量 GO语言数据类型 GO语言流程控制 GO语言数组 GO语言切片 GO语言 map GO语言函数 GO语言指针 Go语言接口 GO语言常用包 GO语言的 ...
- node.js浅见
看过很多朋友node.js代码敲得很好,但是对于概念还是很生疏.个人认为,代码是树叶,树干搭起来才是王道. 1.简述node.js的适用场景: IIO密集而非计算密集的情景:高并发微数据(比如账号系统 ...
- git+webpack项目初始化<一>
目录结构 src + page view image service util git初始化 linux常用命令 rm -rf mmall-fe/ 删除 mkdir mmall-fe 创建文件夹 ls ...