自己做出来的第一道倍增(fake)

原题链接

看到题目,贪心水题!不仅思维难度低,代码也好(难)写,三下五除二就写了出来,过了样例。但是一交,只有40pts。一道紫题能让我快速水40pts,良心出题人啊>ω<!

然后我们考虑如何优化这个贪心:

首先我们发现,对于每一个人,在贪心的思路下,他的下一个最优的接替者都是一定的。这表明我们之前\(O(n^2)\)的贪心中,有很多步骤都是不必要的,如果我们能记录一下从某个人开始,经过几轮交替后的接替者是谁就好了。

于是我们令\(f[i][j]\)表示从第\(i\)个人开始,经过\(j\)次交替后的接替者,但很尴尬的是,这样会爆空间,时间复杂度貌似也不好。然后我们想到了倍增:

令\(f[i][j]\)表示从第\(i\)个人开始,经过\(2^j\)次交替后的接替者,\(f[i][j]\)可以从\(f[f[i][j-1]][j-1]\)转移过来,查询的时候我们就像倍增求\(LCA\)一样,从大到小往上跳,直到当前接替者的奔袭区间的右端点距离\(i\)的左端点不小于\(m\)就行了。

还有一个要注意的地方,我们在预处理\(f[i][0]\)时,不能用\(O(n)\)扫一遍。考虑一种极端情况:所有奔袭区间都为定长\(m-1\),且左端点依次相差\(1\),如果我们还扫一遍的话就会被卡回\(O(n^2)\)了。因为奔袭区间没有互相包含,所以左端点不超过当前区间右端点,且离当前区间右端点最近的区间一定是下一个最优选择,我们二分一下左端点就行了。

上代码(倍增题的预处理都巨长,是我写丑了嘛):

#include <cstdio>
#include <algorithm> using namespace std; #define N (int)2e5
#define re register
#define il inline int n, m, l, r, ans[N+5], f[4*N+5][22], power[30]; //注意断环为链 struct Seg {
int id, l, r;
friend bool operator < (const Seg &lhs, const Seg &rhs) {
return lhs.l < rhs.l;
}
}seg[4*N+5]; il int read() {
int s = 0;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c >= '0' && c <= '9') s = s*10+c-'0', c = getchar();
return s;
} il void write(int x) {
if(x > 9) write(x/10);
putchar(x%10+'0');
} il void init() {
n = read(), m = read();
power[0] = 1;
for(re int i = 1; i <= n; ++i) power[i] = (power[i-1]<<1); //预处理2的次幂
for(re int i = 1; i <= n; ++i) {
seg[i].id = seg[i+n].id = i;
seg[i].l = read(), seg[i].r = read();
if(seg[i].l > seg[i].r) seg[i].r += m;
seg[i+n].l = seg[i].l+m, seg[i+n].r = seg[i].r+m;
}
sort(seg+1, seg+2*n+1);
for(re int i = 1, l, r, mid; i <= n; ++i) {
l = i+1, r = 2*n;
while(l != r) { //二分左端点
mid = (l+r)/2;
if(seg[mid].l > seg[i].r) r = mid;
else l = mid+1;
}
f[i][0] = l-1, f[i+n][0] = l-1+n; //初值
}
for(re int j = 1; power[j] <= n; ++j)
for(re int i = 1; i <= n; ++i)
f[i][j] = f[f[i][j-1]][j-1], f[i+n][j] = f[i][j]+n; //递推f数组
} int main() {
init();
for(re int i = 1, cnt, lim, u; i <= n; ++i) {
cnt = 1, lim = seg[i].l+m, u = i;
for(re int j = 20; j >= 0; --j)
if(seg[f[u][j]].id && seg[f[u][j]].r < lim) cnt += power[j], u = f[u][j];
ans[seg[i].id] = cnt+1;
}
for(re int i = 1; i <= n-1; ++i) write(ans[i]), putchar(' ');
write(ans[n]);
return 0;
}

洛谷P4155 BZOJP4444 [SCOI2015]国旗计划的更多相关文章

  1. [luogu] P4155 [SCOI2015]国旗计划(贪心)

    P4155 [SCOI2015]国旗计划 题目描述 A 国正在开展一项伟大的计划 -- 国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形式共同完成,为此 ...

  2. [SCOI2015]国旗计划[Wf2014]Surveillance

    [SCOI2015]国旗计划 A国正在开展一项伟大的计划——国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这 项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了N名 ...

  3. 【BZOJ4444】[Scoi2015]国旗计划 双指针+倍增

    [BZOJ4444][Scoi2015]国旗计划 Description A国正在开展一项伟大的计划——国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形 ...

  4. 4444: [Scoi2015]国旗计划

    4444: [Scoi2015]国旗计划 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 485  Solved: 232 Description A国 ...

  5. [BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增)

    [BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增) 题面 题面较长,略 分析 首先套路的断环为链.对于从l到r的环上区间,若l<=r,我们 ...

  6. 洛谷P4155 [SCOI2015]国旗计划(贪心,树形结构,基数排序)

    洛谷题目传送门 \(O(n)\)算法来啦! 复杂度优化的思路是建立在倍增思路的基础上的,看看楼上几位巨佬的描述吧. 首先数组倍长是一样的.倍增法对于快速找到\(j\)满足\(l_j+m\le r_i\ ...

  7. [bzoj4444] [loj#2007] [洛谷P4155] [Scoi2015] 国旗计划

    Description \(A\) 国正在开展一项伟大的计划--国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了 ...

  8. [洛谷OJ] P1114 “非常男女”计划

    洛谷1114 “非常男女”计划 本题地址:http://www.luogu.org/problem/show?pid=1114 题目描述 近来,初一年的XXX小朋友致力于研究班上同学的配对问题(别想太 ...

  9. BZOJ1229 & 洛谷2917:[USACO2008 NOV]toy 玩具 & 洛谷4480:[BJWC2018]餐巾计划问题——题解

    标题很长emmm…… [USACO2008 NOV]toy 玩具 https://www.luogu.org/problemnew/show/P2917 https://www.lydsy.com/J ...

随机推荐

  1. PM真的不是PM

    上周写了一篇<PM意识2.0>,前同事老A留言给我说:“PM已死!”一句话勾起很多回忆啊~当年,我们在一家内资IT公司,我是质量总监,他是研发总监,带四五个PM.老A负责所有项目的计划和监 ...

  2. Maven的基础了解与使用

    目录 Maven的介绍: 什么是Maven: 为什么要学习maven? 安装与配置: 下载: 配置环境变量 测试安装结果: Maven概念: 坐标 仓库 入门示例 创建maven工程: 添加依赖 Ma ...

  3. mean项目的分模块开发

    全文字版: 新建maven工程在,作为父工程用于最后集合使用,该工程不需要src,只需要一个pom.xml文件,规定一下依赖版本之类的,再建一个工具类的工程,不需要放配置文件,和工程中方法接口有关的不 ...

  4. Docker 架构(二)【转】

    Docker 使用客户端-服务器 (C/S) 架构模式,使用远程API来管理和创建Docker容器. Docker 容器通过 Docker 镜像来创建. 容器与镜像的关系类似于面向对象编程中的对象与类 ...

  5. Allowed memory size of 134217728 bytes exhausted解决办法(php内存耗尽报错)【简记】

    报错: PHP Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 72 bytes) i ...

  6. Hexo自定义页面的方法

    原文转自:http://refined-x.com/2017/07/10/Hexo%E8%87%AA%E5%AE%9A%E4%B9%89%E9%A1%B5%E9%9D%A2%E7%9A%84%E6%9 ...

  7. Spark RDD持久化、广播变量和累加器

    Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内 ...

  8. Managing Large State in Apache Flink®: An Intro to Incremental Checkpointing

    January 23, 2018- Apache Flink, Flink Features Stefan Richter and Chris Ward Apache Flink was purpos ...

  9. R语言学习——因子

    变量可分为名义型变量.有序型变量或者连续型变量.名义型变量是没有顺序之分的类别变量,如糖尿病类型Diabetes(Type1.Type2),即使在数据中Type1编码为1而Type2编码为2,这也并不 ...

  10. EF Core 多对多配置

    1.配置2个数据表 T_Authors ,T_Books 2.新建控制台项目,安装EF驱动 PM> Install-Package Pomelo.EntityFrameworkCore.Mysq ...