层级索引:

  index=[('a',2010),('b',2011),('c',2010'),('a',2012),('e',2010),('f',2011)]

  age=[18,17,18,16,18,17]

常规创建

  pop =pd.Series(age,index=index)

MultiIndex创建

  index= pd.MultiIndex.from_tuples(index)

  pop = pop.reindex(index)   最原先的索引重置为multiindex

  pop[:,2010]  取出2010的所有数据

  

高维数据的多级索引:

  pop_df = pop.unstack()

  本质是生成一个a-f为行索引,年份为列索引的矩阵,缺失值用nan

  pop = pop_df.stack()   和unstack相反

多级索引创建:

  直接将index参数设为二维

  df = pd.DataFrame(np.random.rand(4,2),

              index=[['a','a','c','d'],[1,2,1,1]],

              columns=['data1','data2'])

  将元祖作为键的字典传入

  data = {('a',1):18,('a',2):19,('b',1):20}

  pd.Series(data)  

  

  显式创建多级索引

  pd.MultiIndex.from_arrays([['a','a','b','b'],[1,2,1,2]])

  pd.MultiIndex.from_tuples([('a',1),('a',2),('b',1),('b',2)])  

多级索引等级名称

  pop.index.names=['name','year']  以前面例子来说给name是a一列的名称,year是2010一列的形成

Series多级索引

获取单个元素:

  pop['a',2010]

  也可以支持局部取值

  pop['a']

  局部切片

  pop['a':'c']  但要求muliIndex按顺序排列

  pop[:,2012]

  pop[pop>18]

  pop[['a','b']]

    

  

  

  

pandas(二)的更多相关文章

  1. python数据分析学习(2)pandas二维工具DataFrame讲解

    目录 二:pandas数据结构介绍   下面继续讲解pandas的第二个工具DataFrame. 二:pandas数据结构介绍 2.DataFarme   DataFarme表示的是矩阵的数据表,包含 ...

  2. pandas(二)

    1.Series序列 一维的数组数据,构建是传二维数据会报错,数据具有索引,构建时如果不传索引,默认为数字rang索引. series存在列名和索引,sr.at[0]是通过列名来定位数据(iat定位行 ...

  3. Python二维数据分析

    一.numpy二维数组 1.声明 import numpy as np #每一个[]代表一行 ridership = np.array([ [ 0, 0, 2, 5, 0], [1478, 3877, ...

  4. numpy和pandas简单使用

    numpy和pandas简单使用 import numpy as np import pandas as pd 一维数据分析 numpy中使用array, pandas中使用series numpy一 ...

  5. 第十章、jupyter入门之pandas

    目录 第十章.jupyter入门之pandas 一.什么是pandas 二.Series 三.基本概念 四.基本运算 五.DataFrame 第十章.jupyter入门之pandas 一.什么是pan ...

  6. 【Python】如何处理Excel中的数据

    我们平时在做自动化测试的时候,可能会涉及到从表格中去读取或者存储数据,我们除了可以使用openpyxl来操作excel,当然也可以利用pandas来完成,这篇随笔只是我在学习过程中的简单记录,其他的功 ...

  7. 2. RDD(弹性分布式数据集Resilient Distributed dataset)

    *以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第二部分是讲RDD.RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外乎创建RDD.转化已有RDD以及 ...

  8. pandas库学习笔记(二)DataFrame入门学习

    Pandas基本介绍——DataFrame入门学习 前篇文章中,小生初步介绍pandas库中的Series结构的创建与运算,今天小生继续“死磕自己”为大家介绍pandas库的另一种最为常见的数据结构D ...

  9. [数据清洗]- Pandas 清洗“脏”数据(二)

    概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的 ...

  10. Pandas系列(二)- DataFrame数据框

    一.初识DataFrame dataFrame 是一个带有索引的二维数据结构,每列可以有自己的名字,并且可以有不同的数据类型.你可以把它想象成一个 excel 表格或者数据库中的一张表DataFram ...

随机推荐

  1. P4147 玉蟾宫--单调栈

    P4147 玉蟾宫 题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子 ...

  2. 六.ansible批量管理服务

    期中集群架构-第六章-ansible批量管理服务介绍====================================================================== 01. ...

  3. numpy的基础运算-【老鱼学numpy】

    概述 本节主要讲解numpy数组的加减乘除四则运算. np.array()返回的是numpy的数组,官方称为:ndarray,也就是N维数组对象(矩阵),N-dimensional array obj ...

  4. 014 链表中倒数第k个结点

    1.题目 输入一个链表,输出该链表中倒数第k个结点. 2.思路 Java代码,通过校验.代码思路如下:两个指针,先让第一个指针和第二个指针都指向头结点,然后再让第一个指正走(k-1)步,到达第k个节点 ...

  5. Ubuntu16.04下Hadoop的本地安装与配置

    一.系统环境 os : Ubuntu 16.04 LTS 64bit jdk : 1.8.0_161 hadoop : 2.6.4 部署时使用的用户名为hadoop,下文中需要使用用户名的地方请更改为 ...

  6. 移动端1px边框实现

    问题描述:移动端iPhone上的1px边框看起来像2px那么粗.问题分析:不同的手机有不同的像素密度,在window对象中有一个devicePixelRatio属性,它可以反应设备的像素与css中的像 ...

  7. ZOJ Monthly, March 2018

    A. Easy Number Game 贪心将第$i$小的和第$2m-i+1$小的配对即可. #include<cstdio> #include<algorithm> usin ...

  8. linux(debian) arm-linux-g++ v4.5.1交叉编译 embedded arm 版本的QtWebkit (browser) 使用qt 4.8.6 版本 以及x64上编译qt

    最近需要做一个项目 在arm 架构的linux下 没有桌面环境的情况下拉起 有界面的浏览器使用. 考虑用qt 的界面和 qtwebikt 的库去实现这一系列操作. 本文参考: Qt移植到ARM Lin ...

  9. 转UI么?不想

    最近一直在弄UI   对于UI实在是不想弄了    很痛苦...我一开始都比较热衷后台开发  但是前端UI 我只是有点兴趣而已,但是还一直要做...太累了    或许要学的东西还是有很多的!一直不知道 ...

  10. jQuery 获取不到 kindeditor 内容 的解决方法

    错误写法 :  var content = $('#Content').val(); 正确写法: var content = $(document.getElementsByTagName(" ...