<题目链接>

题目大意:

Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣。 
这些特殊数是这样的:这些数都能表示成M^K,M和K是正整数且K>1。 
正当他再度沉迷的时候,他发现不知道什么时候才能知道这样的数字的数量,因此他又求助于你这位聪明的程序员,请你帮他用程序解决这个问题。 
为了简化,问题是这样的:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K(K>1)的数。

解题分析:

解决本题需要先知道一个结论:在一个区间[1,n]中,能被开平方的数一共有 个。同理,在区间[1,n]中,能被开立方的数一共有个.....更一般的,能够被开k次方的数一共会有个数。

因为$k$是幂数,所以$k$在本题的范围很小,考虑枚举$k$。对于$k$,假设$k$是合数,那么k一定能够被分解为若干个质数相乘的形式,而这些质数在前面枚举的时候就会被考虑到,所以我们只需要枚举k为质数的情况。而即使是2作为底数,$2^{60}$就已经大于$10^{18}$,所以我们只需要考虑k为小于60的质数的情况。

k为所有质数的情况中,有一些情况会被重复计算,这个时候就需要用到容斥原理了。因为2*3*5>60,所以我们只需要考虑3个质数相互组合容斥的情况。

#include <bits/stdc++.h>
using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++)
typedef long long ll; const int prime[]={ ,,,,,,,,,,,,,,,, };
ll n; inline ll solve(ll k){ //利用结论计算这个区间内能被开(1/k)次方的数的个数(1除外)
return pow(n,1.0/k)-;
} int main(){
while(cin>>n){
ll ans1=,ans2=,ans3=;
rep(i,,)ans1+=solve(prime[i]);
rep(i,,) rep(j,i+,){
ans2+=solve(prime[i]*prime[j]);
}
rep(i,,) rep(j,i+,) rep(k,j+,){
ans3+=solve(prime[i]*prime[j]*prime[k]);
}
cout<<ans1+ans3-ans2+<<endl;
}
}

HDU 2204 Eddy's 爱好 (容斥原理)的更多相关文章

  1. hdu 2204 Eddy's爱好 容斥原理

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem ...

  2. HDU 2204 Eddy's爱好(容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204 解题报告:输入一个n让你求出[1,n]范围内有多少个数可以表示成形如m^k的样子. 不详细说了, ...

  3. HDU 2204 Eddy's爱好(容斥原理dfs写法)题解

    题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数. 思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 ...

  4. hdu 2204 Eddy's爱好

    // 一个整数N,1<=N<=1000000000000000000(10^18).// 输出在在1到N之间形式如M^K的数的总数// 容斥原理// 枚举k=集合{2,3,5,7,11,1 ...

  5. HDU - 2204 Eddy's爱好 (数论+容斥)

    题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...

  6. hdoj 2204 Eddy's爱好

    原文链接:http://www.cnblogs.com/DrunBee/archive/2012/09/05/2672546.html 题意:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K ...

  7. HDU 2204Eddy's爱好(容斥原理)

    Eddy's爱好 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  8. hdu2204 Eddy's爱好 打表+容斥原理

    Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣.这些特殊数是这样的:这些数都能表示成M^K,M和K是 ...

  9. Hdu2204 Eddy's爱好 2017-06-27 16:11 43人阅读 评论(0) 收藏

    Eddy's爱好 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Subm ...

随机推荐

  1. Dynamics CRM 如何修复 Access Is Denied - ObjectTypeCode: 2500 的错误

    最近被 Dynamics CRM 的权限配置问题恶心了一个星期,老是报“Access Is Denied”,几经波折,最后终于找到一个比较合适的解决方案,写个博客 mark 下来,方便以后查看. 首先 ...

  2. zipline-- 开发指南

    Development Guidelines开发指南This page is intended for developers of Zipline, people who want to contri ...

  3. Linux下批量杀掉 包含某个关键字的 程序进程

    有时候因为一些情况,需要把 linux 下符合某一项条件的所有进程 kill 掉,又不能用 killall 直接杀掉某一进程名称包含的所有运行中进程(我们可能只需要杀掉其中的某一类或运行指定参数命令的 ...

  4. js ajax方法模板

    ajax方法: $.ajax({ type: "POST", url: "WebService.asmx/sp_sj_yisheng_gexinhuaAdd", ...

  5. selenium定位方式-Xpath使用方法

    什么是Xpath? XPath是XML的路径语言,通俗一点讲就是通过元素的路径来查找到这个标签元素. 一. 在火狐浏览器上安装Xpath 方法如下: 1.使用 Firefox 访问 https://a ...

  6. 一、下载安装superset

    1.环境介绍: 操作系统:Windows 10 python版本:3.73 2.创建虚拟环境: 打开命令行窗口,使用安装python自带的pip命令,下载pinenv 虚拟环境工具, pip inst ...

  7. springboot中使用kindeditor富文本编辑器实现博客功能

    kindeditor在之前已经用过,现在在springboot项目中使用.并且也在里面使用了图片上传以及回显等功能. 其实主要的功能是图片的处理:kindeditor对输入的内容会作为html标签处理 ...

  8. 第一章 初识Mysql

    Mysql是一个开放源代码的数据库管理系统(DBMS),它是由MySQL AB 公司开发.发布并支持的. 登录 -- mysql #本地登录,默认用户root,空密码,用户为root@127.0.0. ...

  9. dml并行

    Enabling Parallel DMLA DML statement can be parallelized only if you have explicitly enabled paralle ...

  10. D - WE POJ - 3273 (二分法)

    Farmer John is an astounding accounting wizard and has realized he might run out of money to run the ...