Nvidia和Google的AI芯片战火蔓延至边缘端
AI 的热潮还在持续,AI 的战火自然也在升级。英伟达作为这一波 AI 浪潮中最受关注的公司之一,在很大程度上影响着 AI 的战局。上周在美国举行的 GTC 2019 上,黄仁勋大篇幅介绍了英伟达在 AI 软件和计算力方面的提升,但售价仅为 99 美元(约 664 元人民币)的 Jetson Nano 人工智能计算机却成了最受关注的焦点。本月早些时候的 TensorFlow 开发者峰会上,谷歌也发布售价 149.99 美元(约 1009 元人民币)的 Edge TPU 开发板。
虽然是最受关注的 AI 芯片公司,但 2018 年的英伟达算不上顺利,先是因为矿难导致 GPU 库存高企,后又因中国市场的需求和服务器市场需求低于预期股价受拖累。整个 2018 年,英伟达的市值缩水了近一半。因此,在 AMD 已经抢先发布 7nm GPU 的背景下,外界更加期待英伟达能在 GTC 2019 上发布最新 7nm GPU。
不过,黄仁勋并未发布最新的 7nm GPU,而是花了大量的时间介绍 RTX 和 CUDA-X AI。
CUDA-X AI 把所有英伟达的库整合。根据黄仁勋的说法,CUDA-X AI 解锁了 Tensor Core GPU 的灵活性,能够将机器学习和数据科学工作负载加速多达 50 倍。另外,CUDA-X AI 还可以加速典型 AI 工作流程的每一步,包括用深度学习训练语音和图像识别系统。
英伟达也宣布已经有七家世界级的厂商将推出基于 NVIDIA T4 GPU 和 NVIDIA CUDA-X AI 加速库的服务器,这些服务器都已经针对 CUDA-X AI 进行了特殊优化。亚马逊 AWS 副总裁 Matt Garman 还宣布最新的 EC2 G4 服务器采用了英伟达 T4 Tencor Core GPU,该服务器将在未来几周内可用。
虽然英伟达没有推出性能更强的 GPU,但正在通过 CUDA-X AI 提升其 GPU 在云端的性能和吸引力。即便如此,英伟达的重要客户谷歌还是推出了自主研发的云端 AI 芯片 TPU。
自 2015 年起,谷歌开始在内部使用 TPU 芯,2016 年谷歌首次公开承认 TPU 的存在,2017 年发布了第二代 TPU,TPU 3.0 在 2018 年发布。这意味着,谷歌在云端 AI 芯片市场与英伟达的关系从此前的合作变为了合作竞争的关系。
雷锋网了解到,黄仁勋在谈到谷歌 TPU 时曾强硬的表示对 TPU 的威胁不以为然。谷歌与英伟达在云端 AI 芯片市场的竞争短期内难见结论。但却可以明确他们的芯片竞争已经蔓延到了边缘端。
边缘端的 AI 芯片战
作为老牌芯片巨头,英伟达很早就已经入局边缘计算市场,Jetson 系列的包括用于完全自主机器的 Jetson AGX Xavier 和用于边缘人工智能的 Jetson TX2 已经推出,只是几百甚至上千美元的价格阻挡了不少用户。GTC 2019 推出的同系列 Jetson Nano 之所以关注度很高,关键的原因就是价格。
纵观不同行业发展的历程,产业的爆发除了有技术成熟的因素,产品价格下降到市场可接受的程度也非常关键。GTC 2019 上推出的 Jetson Nano 计算机,价格让然惊喜,外观小巧但性能不低。据悉,Jetson Nano 的性能可达 472 GFLOPS(每秒十亿次浮点运算),耗电量仅为 5 瓦。同时,Jetson Nano 支持高分辨率传感器,可以并行处理多个传感器,并且可在每个传感器流上运行多个现代神经网络。
针对不同的需求,英伟达还推出了两个版本的 Jetson Nano,一个是售价 99 美元的开发者套件,专为开发人员、创客和技术爱好者提供,另一个是售价 129 美元的生产就绪型模块,面向大众市场创建边缘系统的企业。
与英伟达的 Jetson Nano 类似,谷歌本月初发布的搭载 Edge TPU 的开发板 Coral 售价 150 美元。Coral 开发板拥有 1GB 的 LPDDR4 内存和 8GB 的 eMMC 存储,安装 Mendel 版 Linux 或者 Android,可以进行本地的离线运算,性能最高可达 4 万亿次操作。
除了 Coral 开发板,谷歌还发布了一款售价 75 美元的 Coral USB 加速器,同样包含一颗 Edge TPU,可以在任何 64 位 ARM 或 x86 平台的 Debian Linux 上运行。
黄仁勋不认为谷歌的 TPU 是一个威胁,但在边缘端低价产品进展方面两大巨头显得颇有默契。先是谷歌推出搭载 Edge TPU 售价 75 美元和 150 美元的开发板以及加速器。不久后英伟达就推出售价 99 和 129 美元的 Jetson Nano。
不仅售价相互竞争,面向的边缘计算市场也会重叠。英伟达表示,Jetson Nano 可以创建数百万个智能系统,模块面向网络录像机、家用机器人和具有完整分析功能的智能网关等嵌入式应用。英伟达希望能为复杂、稳健、节能的人工智能系统的硬件设计、测试和验证节约时间,缩短总体开发时间让产品更快将推向市场。
Coral 开发板也强调面向嵌入式设备的隐私、低延迟、高效和离线部署。具体的应用方面,谷歌展示了基于 Coral 的一个有趣的图像分类应用。谷歌表示其提供了简单的 API,可在 Edge TPU 设备上执行图像分类,对象检测。这意味着,Edge TPU 看好和图像相关的边缘端应用。
因此,无论是从定位、性能、应用还是售价看,谷歌和英伟达在边缘端又一次正面竞争。
普及 AI 还是革命 AI 芯片初创公司?
谷歌和英伟达的竞争能够在一定程度上促进 AI 的发展,特别是在边缘端。Jetson Nano 和 Coral 开发板的方式能在很大程度上降低 AI 产品开发的难度并加速产品的上市时间,为现有做 AI 应用的公司增加了选择,当然也会想要借助 AI 进行更多创新的公司和个人提供了更加便携的选择,这对 AI 在边缘端的普及具有积极意义。
然而,对于众多 AI 芯片初创公司而言可能是个坏消息。雷锋网(公众号:雷锋网)2018 年曾统计过,创立于国内的 13 家 AI 芯片初创公司有 11 家都布局了自动驾驶和安防领域,并且都是面向边缘端的 AI 芯片。AI 芯片初创公司们之所以大部分都选择 AI 边缘计算市场,是因为在云端,英特尔和英伟达占据绝对的优势地位,初创公司想要在这一领域获得成功难度非常大。
虽然边缘端 AI 给初创公司更大的市场和机遇,但从目前的情况看英伟达在自动驾驶领域也有不错的市场表现。如今,英伟达和谷歌都推出更加简单易用,且价格更易于接受的开发板,AI 芯片初创公司又多了两个竞争对手,并且是实力强大的竞争对手。
更会让 AI 芯片初创公司感到不安的是,由于两大巨头都有云端 AI 芯片,与边缘端的 AI 芯片配合能够实现更强的竞争力。并且,软件在 AI 芯片中的重要作用正被越来越多的人看到,不巧的是英伟达和谷歌都有强大的软件。
文章开篇已经提到,英伟达发布 CUDA-X AI 将提升 GPU 的 AI 性能,但与此同时 Jetson Nano 也是可运行所有人工智能模型的 NVIDIA CUDA-X 人工智能计算机。
谷歌方面,与 Coral 开发板同时发布的还有为移动和嵌入式设备提供的跨平台解决方案 TensorFlow Lite,这个轻量级(Lite)的框架有助于机器学习模型部署在移动和 IoT 设备上的。谷歌表示,经过 TensorFlow Lite 的优化后,CPU 的性能达到原来的 1.9 倍,在 Edge TPU 上的性能最高提升 62 倍。
雷锋网认为,巨头们拥有从云端到终端的 AI 芯片,并且有强大的软件帮助芯片提升硬件的性能,同时还有长期建立的品牌、渠道、市场等方面的优势,这在推动 AI 在边缘端普及的同时,还将与众多的 AI 芯片初创公司产生竞争。
只是,未来仍有诸多不确定性,英伟达、谷歌到底会在多大程度上影响 AI 芯片初创公司?
本文转自:https://www.linuxprobe.com/to-the-edge.html
Nvidia和Google的AI芯片战火蔓延至边缘端的更多相关文章
- 比特大陆发布终端 AI 芯片 端云联手聚焦安防
雷帝网 乐天 10月17日报道 比特大陆今日正式发布终端人工智能芯片BM1880,一同发布的还有基于云端人工智能芯片 BM1682 的算丰智能服务器 SA3.嵌入式AI迷你机 SE3.3D 人脸识别智 ...
- 人工智能AI芯片与Maker创意接轨(下)
继「人工智能AI芯片与Maker创意接轨」的(上)篇中,认识了人工智能.深度学习,以及深度学习技术的应用,以及(中)篇对市面上AI芯片的类型及解决方案现况做了完整剖析后,系列文到了最后一篇,将带领各位 ...
- 人工智能AI芯片与Maker创意接轨 (中)
在人工智能AI芯片与Maker创意接轨(上)这篇文章中,介绍人工智能与深度学习,以及深度学习技术的应用,了解内部真实的作业原理,让我们能够跟上这波AI新浪潮.系列文来到了中篇,将详细介绍目前市面上的各 ...
- 深度 | AI芯片之智能边缘计算的崛起——实时语言翻译、图像识别、AI视频监控、无人车这些都需要终端具有较强的计算能力,从而AI芯片发展起来是必然,同时5G网络也是必然
from:https://36kr.com/p/5103044.html 到2020年,大多数先进的ML袖珍电脑(你仍称之为手机)将有能力执行一整套任务.个人助理将变的更加智能,它是打造这种功能的切入 ...
- AI芯片:高性能卷积计算中的数据复用
随着深度学习的飞速发展,对处理器的性能要求也变得越来越高,随之涌现出了很多针对神经网络加速设计的AI芯片.卷积计算是神经网络中最重要的一类计算,本文分析了高性能卷积计算中的数据复用,这是AI芯片设计中 ...
- AI芯片
课程作业,正好自己也在学深度学习,正好有所帮助,做了深度学习的AI芯片调研,时间比较短,写的比较仓促,大家随便看看 近年来,深度学习技术,如卷积神经网络(CNN).递归神经网络(RNN)等,成为计算机 ...
- 深度 | AI芯片终极之战
深度 | AI芯片终极之战 https://mp.weixin.qq.com/s?__biz=MzA4MTQ4NjQzMw==&mid=2652712307&idx=1&sn= ...
- 人工智能AI芯片与Maker创意接轨 (上)
近几年来人工智能(Artificial Intelligence, AI)喴的震天价响,吃也要AI,穿也要AI,连上个厕所也要来个AI智能健康分析,生活周遭食衣住行育乐几乎无处不AI,彷佛已经来到科幻 ...
- 一文看懂AI芯片竞争五大维度
下一波大趋势和大红利从互联网+让位于人工智能+,已成业界共识.在AI的数据.算法和芯片之三剑客中,考虑到AI算法开源的发展趋势,数据与芯片将占据越来越重要的地位,而作为AI发展支柱的芯片更是AI业的竞 ...
随机推荐
- leetcode — pascals-triangle
import java.util.ArrayList; import java.util.Arrays; import java.util.List; /** * Source : https://o ...
- Docker系列07—Dockerfile 详解
本文收录在容器技术学习系列文章总目录 1.认识Dockerfile 1.1 镜像的生成途径 基于容器制作 dockerfile,docker build 基于容器制作镜像,已经在上篇Docker系列 ...
- xamarin.forms之实现ListView列表倒计时
做商城类APP时经常会遇到抢购倒计时的功能,之前做小区宝iOS的时候也有类似的功能,想着参考iOS做的思路,自定义一个Cell,在Cell中每秒刷新一下控件的文本值,但使用xamarin.forms实 ...
- C#简单委托示例——让你一看就会的demo
委托 1. 什么是委托? 委托就是具有相同签名和返回值类型的有序方法列表 它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递 是一种引用类型 方法的列表称为调用列表 当委托被调用时,它调 ...
- 使用VBA批量CSV转XLS(97-2003)
Sub EditCsvToXls() Application.ScreenUpdating = False '文件目录 ChDir "C:\Users\QA-Department\Deskt ...
- 杭电ACM2005--第几天?
第几天? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- WPF DesiredSize & RenderSize
DesiredSize DesiredSize介绍 关于DesiredSize的介绍,可以查看最新微软文档对DesiredSize的介绍 DesiredSize,指的是元素在布局过程中计算所需要的大小 ...
- [android]android项目的目录结构
/**************2016年4月23更新*********************/ 相关技术: 知乎:用eclipse做Android开发,新建工程时应如何选择Android的版本? 肥 ...
- C# /VB.NET操作Word批注(一)—— 插入、修改、删除Word批注
批注内容可以是对某段文字或内容的注释,也可以是对文段中心思想的概括提要,或者是对文章内容的评判.疑问,以及在阅读时给自己或他人起到提示作用.本篇文章中将介绍如何在C#中操作Word批注,主要包含以下要 ...
- 流程控制值while 循环
一.结束循环的两种方式 1. 修改条件tag=Truewhile tag: print(1) print(2) print(3) tag=False print(4) 2.while + break ...