【codechef】FN/Fibonacci Number
题意
给出 c 和 P ,求最小的非负整数 n 使得 \(Fib(n)=c(mod~ P)\)
其中 P 是质数且 模 10 等于一个完全平方数(也就是说 P 的末位是个完全平方数,那么只能是 1 或者 9 )
(这里的 Fib 指的就是斐波那契数列)
前置芝士
- Cipolla (attack 巨巨写的炒鸡好,%%%)
- BSGS (Judge 菜鸡写的炒鸡烂,踩踩踩)
noteskey
不知道怎么做,只能黈力呢...
我们发现斐波那契数列第 n 项是:
\]
然后的话我们令 g 表示\(1\over \sqrt5\), q 表示 \({1+\sqrt5\over 2}\) , \(-{1\over q}\) 表示 \(1-\sqrt 5\over 2\) 了
这样的话原本的式子就是:
\]
令 \(x=q^n\) ,那么继续转式子:
\]
\]
然后的话我们就可以求根公式了:
\]
这样我们就可以先假设 n 的奇偶性, \(Cipolla\) 求出根号里的东西然后中间的 正负号都取一遍,这样 x 的值已经固定了,然后我们 bsgs 求出满足当前枚举的奇偶性的 n ,答案就出来了呢(最小非负整数的话就四者取个 min 就好了呢)
上面还有一个问题: 5 万一不是 模 P 意义下的二次剩余怎么办...
这个问题不用担心,题目保证了 \(P\%10=1 ~~ or~~ 9\) ,也就是说 \(P\%5=± 1\) ,据说对于 \(P\%5=±1\) 的 P 都有** 5 是模 P 的二次剩余?** 不知道为什么 (【滑稽)的说...
总之我们套两个板子就可以 A 掉此题了 QWQ
code
虽说不晓得为什么 \(\omega\) 这个虚部当成向量的第二维默认为 1 个单位就是了
而且 \(BSGS\) 里面的 \(sqrt\) 我一开始写成 \(Sqrt\) 了呢,是不是没救了呢...
另外注意这里的 \(mod\) 范围 \(2e9\) ,\(inc\) 里面千万记得加上 \(0ll\) 不然可能要调很久...(和我一样)
//by Judge
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(Rg int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(Rg int i=head[u],v=e[i].to;i;v=e[i=e[i].nxt].to)
#define ll long long
using namespace std;
const int inf=0x7fffffff;
const int M=1e5+3;
typedef int arr[M];
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline void cmin(int& a,int b){a=a<b?a:b;}
inline int read(){ int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} char sr[1<<21],z[20];int CCF=-1,Z;
inline void Ot(){fwrite(sr,1,CCF+1,stdout),CCF=-1;}
inline void print(int x,char chr='\n'){
if(CCF>1<<20)Ot();if(x<0)sr[++CCF]=45,x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++CCF]=z[Z],--Z);sr[++CCF]=chr;
} int c,s,p,w,a,mod,inv2,res,rt;
inline int dec(int x,int y){return x<y?x-y+mod:x-y;}
inline int inc(int x,int y){return 0ll+x+y>=mod?0ll+x+y-mod:x+y;}
inline int mul(int x,int y){return 1ll*x*y-1ll*x*y/mod*mod;}
inline int qpow(Rg int x,Rg int p,Rg int s=1){
for(;p;p>>=1,x=mul(x,x)) if(p&1) s=mul(s,x); return s;
}
struct cp{ int x,y; inline cp(Rg int xx,Rg int yy){x=xx,y=yy;}
inline cp operator *(const cp& b)const{ //有点鬼畜不知原理的向量乘操作呢
return cp(inc(mul(x,b.x),mul(w,mul(y,b.y))),inc(mul(x,b.y),mul(y,b.x)));
}
};
inline int qpow(Rg cp x,Rg int p){ Rg cp s(1,0); //向量快速乘?【逃
for(;p;p>>=1,x=x*x) if(p&1) s=s*x; return s.x;
}
inline int Sqrt(int x){ if(!x) return 0; // 0 的情况返回 0 就好了
if(qpow(x,(mod-1)>>1)==mod-1) return -1; // 无解返回 -1
while(1){ a=mul(rand(),rand()),w=dec(mul(a,a),x);
if(qpow(w,(mod-1)>>1)==mod-1) return qpow(cp(a,1),(mod+1)>>1);
}
}
const int N=262144;
struct Hash{ int pat,head[N]; struct Edge{int to,nxt,w; }e[N]; //hash 手打 map ?【雾
inline void clr(){memset(head,0,sizeof head),pat=0;}
inline void add(int v,int w){e[++pat]={v,head[v&262143],w},head[v&262143]=pat;}
inline int query(int x){go(x&262143)if(v==x)return e[i].w;return -1;}
}mp[2];
inline int bsgs(int x,int v,int tp){ //这里传的 tp 值是为了限制答案 n 的奇偶性
int m=sqrt(mod)+1; mp[0].clr(),mp[1].clr();
for(Rg int i=1,res=mul(v,x);i<=m;++i,res=mul(res,x)) mp[i&1].add(res,i);
for(Rg int i=1,tmp=qpow(x,m),res=tmp;i<=m;++i,res=mul(res,tmp))
if(mp[i*m&1^tp].query(res)!=-1) return i*m-mp[(i*m)&1^tp].query(res);
return inf;
}
int main(){ srand(time(NULL)); int T=read();
for(;T;--T){
c=read(),mod=read(),s=Sqrt(5),inv2=(mod+1)>>1;
p=mul(s+1,inv2),c=mul(c,s),res=inf;
rt=Sqrt((1ll*c*c+4)%mod); //第一种可能
if(rt>=0) cmin(res,bsgs(p,mul(inc(c,rt),inv2),0)), //再来两种可能
cmin(res,bsgs(p,mul(dec(c,rt),inv2),0));
rt=Sqrt((1ll*c*c+mod-4)%mod); //第二种可能
if(rt>=0) cmin(res,bsgs(p,mul(inc(c,rt),inv2),1)), //然后又是两个可能
cmin(res,bsgs(p,mul(dec(c,rt),inv2),1));
print(res<inf?res:-1);
} return Ot(),0;
}
【codechef】FN/Fibonacci Number的更多相关文章
- 【leetcode】509. Fibonacci Number
problem 509. Fibonacci Number solution1: 递归调用 class Solution { public: int fib(int N) { ) return N; ...
- 【LeetCode】509. Fibonacci Number 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...
- 【转】oracle数据库NUMBER数据类型
原文:http://www.jb51.net/article/37633.htm NUMBER ( precision, scale)a) precision表示数字中的有效位;如果没有指定prec ...
- 【CF245H】Queries for Number of Palindromes(回文树)
[CF245H]Queries for Number of Palindromes(回文树) 题面 洛谷 题解 回文树,很类似原来一道后缀自动机的题目 后缀自动机那道题 看到\(n\)的范围很小,但是 ...
- 【CodeChef】Querying on a Grid(分治,最短路)
[CodeChef]Querying on a Grid(分治,最短路) 题面 Vjudge CodeChef 题解 考虑分治处理这个问题,每次取一个\(mid\),对于\(mid\)上的三个点构建最 ...
- 【CodeChef】Palindromeness(回文树)
[CodeChef]Palindromeness(回文树) 题面 Vjudge CodeChef 中文版题面 题解 构建回文树,现在的问题就是要求出当前回文串节点的长度的一半的那个回文串所代表的节点 ...
- 【BZOJ4026】dC Loves Number Theory 分解质因数+主席树
[BZOJ4026]dC Loves Number Theory Description dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给 ...
- 【CodeChef】Find a special connected block - CONNECT(斯坦纳树)
[CodeChef]Find a special connected block - CONNECT(斯坦纳树) 题面 Vjudge 题解 还是一样的套路题,把每个数字映射到\([0,K)\)的整数, ...
- 【LeetCode】375. Guess Number Higher or Lower II 解题报告(Python)
[LeetCode]375. Guess Number Higher or Lower II 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://f ...
随机推荐
- springboot项目从硬盘指定位置读取文件(获取静态资源)
方法一:继承WebMvcConfigurerAdapter类 package com.imooc.demo.config; import org.springframework.context.ann ...
- Ubuntu18.04LTS安装Nvidia显卡
笔者在为Ubuntu18.04LTS安装Nvidia显卡驱动之前,早就听说了一系列关于由于Nvidia驱动引起的疑难杂症.选择高质量的教程并保持足够的耐心,就能解 决这些问题.很重要的一点,不要怕把电 ...
- Go之运算符
逻辑运算符用于连接布尔型表达式.在Java中不同于数学的逻辑表达 3<X<5 ,java 中应该写成 x>3 & x<5 "&" 和&quo ...
- React生命周期详解
React生命周期图解: 一.旧版图解: 二.新版图解: 从图中,我们可以清楚知道React的生命周期分为三个部分: 实例化.存在期和销毁时. 旧版生命周期如果要开启async rendering, ...
- 为Spring Cloud Ribbon配置请求重试(Camden.SR2+)
当我们使用Spring Cloud Ribbon实现客户端负载均衡的时候,通常都会利用@LoadBalanced来让RestTemplate具备客户端负载功能,从而实现面向服务名的接口访问. 下面的例 ...
- 认识 WebService
什么是服务? 1)现在的应用程序变得越来越复杂,甚至只靠单一的应用程序无法完成全部的工作.更别说只使用一种语言了. 2)大家在写应用程序查询数据库时,并没有考虑过为什么可以将查询结果返回给上层的应用 ...
- Python——代码汇总
1.三级菜单 2.Windows启动服务 3.常用的Python实现 4.字典的基本操作
- hdu-4612(无向图缩点+树的直径)
题意:给你n个点和m条边的无向图,问你如果多加一条边的话,那么这个图最少的桥是什么 解题思路:无向图缩点和树的直径,用并查集缩点: #include<iostream> #include& ...
- python format() 函数
转载 https://www.cnblogs.com/wushuaishuai/p/7687728.html 正文 Python2.6 开始,新增了一种格式化字符串的函数 format() ,它增强了 ...
- [NOI2017]游戏
题目描述 http://www.lydsy.com/JudgeOnline/upload/Noi2017D2.pdf 题解 如果说没有x的话,那么每一局只能有两种选择,可以描述为是/非,每条限制也可以 ...