Comparison of Models for Predicting the Outcome of Craniocerebral Injury by Using Machine Learning

 

 

Introduction

Craniocerebral injury leads to a high probability of death and disability, the accurate and timely prediction of the outcome of this clinical condition is the key point in diagnosis and treatment. However, the traditional evaluation systems of craniocerebral injury mainly depend on the experience of experts and is often not objective enough. Therefore, we built models to predict the outcome by using machine learning to improve the prediction accuracy. However, the generalization error of existing tools may result in wandering in accuracy in different machine learning model.. Therefore, based on the clinical data of patients with craniocerebral injury, we established multiple models using different algorithms to find the appropriate model to improve the accuracy and objective of prediction.

Methods

Date was collected from patients with craniocerebral injury admitted to the Department of trauma surgery in Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences. Inclusion criteria: 1) age 4-81, 2) the head injury history.. We used these data to build a variety of machine learning models including Decision tree, Linear Discriminant, SVM , KNN and Boostedtrap. and compared their performances by means of Receiver Operating Characteristic (ROC) and Area under Curve (AUC), Accuracy, F-Score, Precision Ratio and Recall Ratio, Training Time. All of these results are compared to the classical Logistic regression results. Model building and evaluation using MATLAB2016a(MathWorks, America)on the windows10.

Results

127 patients with craniocerebral injury were enrolled. The accuracy of all machine learning models was between 86.6% and 94.5%, and the Logistic regression's accuracy is …., which indicated that the establishment of machine learning models can be regarded as an effective way to predict the outcome of patients with craniocerebral injury.. Different machine learning models result data have differ performance in our clinical dataset. but except for ****, all of the performance of our algorithm is better than that of the classical Logistic Regression.

Conclusion

In this study, we found that using machine learning models can predict the outcome of patients with craniocerebral injury in a better way.
In addition to more accurate predictions, some machine-learning algorithms can provide better interpretative analysis of clinical data

beifen的更多相关文章

  1. [django]数据导出excel升级强化版(很强大!)

    不多说了,原理采用xlwt导出excel文件,所谓的强化版指的是实现在网页上选择一定条件导出对应的数据 之前我的博文出过这类文章,但只是实现导出数据,这次左思右想,再加上网上的搜索,终于找出方法实现条 ...

  2. [django]手动数据库备份

    基本原理是按钮点击后,系统查询出数据表中信息,然后在网页中导出相关表格! 若有自动数据库备份的兄弟,指点一下! 模板代码: <a href="{% url 'work_backup' ...

  3. Linux创建定时任务

    例如: 要求每天23:59分备份lampp日志: 备份的文件名以当时的时间命名 格式为:201612241852_acces.log 备份到:/tmp/logs/目录下 1.新建shell脚本:vim ...

  4. mysql在linux下修改存储路径

    通过下面几步即可修改路径,这里的路径都是测试的路径,一般默认安装路径在/var/lib/mysql下,真正配置按照真实路径配置. 1.修改/etc/sysconfig/selinux文件:#SELIN ...

  5. SharePoint 2010 网站备份还原简单介绍

    今天尝试了SharePoint2010网站的备份和还原,从网上搜一些文档看看,然后自己试试,感觉和2007的操作没什么太大的区别,跟大家分享下自己尝试的命令行方式和数据库的方式,2007自己常用的也是 ...

  6. mysqldump备份

    备份工具1.mysqldump(数据量很大时不推荐使用)   myisam 锁表   innodb 行锁 mysqldump --help | less   #查看mysql所有的语法 mysqldu ...

  7. ASP.NET备份还原数据库

    核心技术:using System.Data.SqlClient;using System.IO;string SqlStr1 = "Server=(local);DataBase=mast ...

  8. Mysql数据库连接、查询、记录集操作代码

    Mysql数据库链接代码 function dbConnect($hostname,$username,$pass,$db_name,$pconnect =0) { $func=empty($pcon ...

  9. tar 命令打包,除了某个目录剩下的都打包

    tar czvf beifen.tar.gz  ./webdata  --exclude webdata/uploadfiles

随机推荐

  1. iframe父页面和子页面获取元素和js变量

    父页面获取iframe页面元素和变量 获取方法:$("#id")[0].contentWindow.showInfo(): 获取元素:  $("#id").co ...

  2. Java程序设计的第一次作业1

  3. hbase之认识

    进入HBase客户端命令操作界面    $ bin/hbase shell 查看帮助命令        hbase(main):001:0> help 查看当前数据库中有哪些表        h ...

  4. Kali 安装 VMwaretools 时 “没有足够可有空间提取xxxxxx”

    方法:将VMwaretools 的压缩包复制到想要解压的地方,然后再进行提取

  5. linux 下的read write 和fread fwrite

    待进一步测试啊,先占坑 --------2017/7/17 忘记之前要写什么了,只记得当时测试完得出的结论是,无论是写设备还是写文件,都用read/write是既安全又省事情的举动.还熟悉. 尽多少力 ...

  6. mysql 自定义插件调试

    # 创建表的stack frame #0: 0x000000011d11f58a ha_spartan.so`Spartan_data::create_table(this=0x00007f9fc13 ...

  7. 分享张鑫旭大神的,纯css打字小技巧,我顺便收藏一下

    CSS代码: .typing { width: 15em; white-space: nowrap; border-right: 2px solid transparent; animation: t ...

  8. spring(IOC)动态代理

    姓名:黄于霞      班级:软件151 1.引入Spring IOC的核心jar包,创建IOC的配置文件beans.xml,内容如下: 1 <?xml version="1.0&qu ...

  9. 整数中x出现的次数

    求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.ACMer ...

  10. linux TOP参数

    TOP参数 top - 01:06:48 up  1:22,  1 user,  load average: 0.06, 0.60, 0.48Tasks:  29 total,   1 running ...