Linux 驱动——Button驱动5(atomic)原子量
button_drv.c驱动文件:
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/device.h>
#include <asm/arch/regs-gpio.h>
#include <linux/irq.h>
#include <asm-arm/irq.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/hardware.h>
#include <linux/poll.h>
#define DRIVER_NAME "button_drv"
#define DEVICE_NAME "button_dev"
int major;
static atomic_t openFlag = ATOMIC_INIT(1); //定义原子变量openFlag并初始化为1
volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;
volatile unsigned long *gpgcon;
volatile unsigned long *gpgdat;
struct class *button_class;
struct class_device *button_class_device;
unsigned char ev_press;
DECLARE_WAIT_QUEUE_HEAD(button_waitq); //注册等待队列
struct fasync_struct *button_fasync; //定义fasync_struct结构体
unsigned char keyVal;
struct pin_desc{
unsigned int pin;
unsigned int key_val;
};
struct pin_desc pins_desc[4] = {
{S3C2410_GPF0, 0x01},
{S3C2410_GPF2, 0x02},
{S3C2410_GPG3, 0x03},
{S3C2410_GPG11, 0x04},
};
irqreturn_t buttons_irq(int irq, void *dev_id)
{
unsigned int pin_val;
struct pin_desc *pin_desc = (struct pin_desc *)dev_id;
pin_val = s3c2410_gpio_getpin(pin_desc->pin);
if(pin_val)
{
keyVal = 0x80 | pin_desc->key_val;
}
else
{
keyVal = pin_desc->key_val;
}
wake_up_interruptible(&button_waitq);
ev_press = 1;
kill_fasync(&button_fasync, SIGIO, POLL_IN); //发送信号给进程
return IRQ_HANDLED;
}
int button_drv_open(struct inode *inode, struct file *file)
{
int ret;
if(atomic_dec_and_test(&openFlag)==0) //自减后是否为0, 不为0说明已经被别的线程调用, 要是为0则返回为真, 否则返回为假
{
atomic_inc(&openFlag);
return -EBUSY;
}
ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S1", &pins_desc[0]);
if(ret<0)
{
printk("failed 1 button_drv_open");
}
ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[1]);
if(ret<0)
{
printk("failed 2 button_drv_open");
}
ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[2]);
if(ret<0)
{
printk("failed 3 button_drv_open");
}
ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[3]);
if(ret<0)
{
printk("failed 4 button_drv_open");
}
return 0;
}
ssize_t button_drv_read(struct file *file, char __user *userbuf, size_t count, loff_t *off)
{
int ret;
ret = copy_to_user(userbuf, &keyVal, 1);
if(ret<0)
{
printk("failed 1 button_drv_read \n");
return -1;
}
ev_press = 0;
return 1;
}
int button_drv_close(struct inode *inode, struct file *file)
{
atomic_inc(&openFlag); //原子变量加1
free_irq(IRQ_EINT0, &pins_desc[0]);
free_irq(IRQ_EINT2, &pins_desc[1]);
free_irq(IRQ_EINT11, &pins_desc[2]);
free_irq(IRQ_EINT19, &pins_desc[3]);
return 0;
}
unsigned int button_drv_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait);
if(ev_press)
{
mask |= POLLIN | POLLRDNORM;
}
return mask;
}
int button_drv_fasync(int fd, struct file *file, int on)
{
int ret;
ret = fasync_helper(fd, file, on, &button_fasync);
if(ret<0)
{
printk("failed 1 button_drv_fasync \n");
return ret;
}
return 0;
}
struct file_operations button_drv_fops = {
.owner = THIS_MODULE,
.open = button_drv_open,
.read = button_drv_read,
.release = button_drv_close,
.poll = button_drv_poll,
.fasync = button_drv_fasync,
};
int __init button_drv_init(void)
{
major = register_chrdev(0, DRIVER_NAME, &button_drv_fops);
if(major<0)
{
printk("failed 1 button_drv_init \n");
}
button_class = class_create(THIS_MODULE, DEVICE_NAME);
if(button_class<0)
{
printk("failed 2 button_drv_init \n");
}
button_class_device = class_device_create(button_class, NULL, MKDEV(major, 0), NULL, DEVICE_NAME);
if(button_class_device<0)
{
printk("failed 3 button_drv_init \n");
}
gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;
gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
gpgdat = gpgcon + 1;
return 0;
}
void __exit button_drv_exit(void)
{
unregister_chrdev(major, DEVICE_NAME);
class_device_unregister(button_class_device);
class_destroy(button_class);
iounmap(gpfcon);
iounmap(gpgcon);
}
module_init(button_drv_init);
module_exit(button_drv_exit);
MODULE_LICENSE("GPL");
Makefile文件:
obj-m += timer_drv.o
KERN_DIR = /work/system/linux-2.6.22.6
all:
make -C $(KERN_DIR) M=`pwd` modules
clean:
rm -rf *.o *.ko *.order *.symvers *.mod.c
button_app.c文件:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <signal.h>
static int fd;
void button_signal(int signum)
{
unsigned char keyVal;
printf("signal = %d \n", signum);
read(fd, &keyVal, 1);
printf("keyVal = 0x%x \n", keyVal);
}
int main(int argc, char **argv)
{
int oflags;
char *filename;
filename = argv[1];
fd = open(filename, O_RDWR);
if(fd<0)
{
printf("can not open \n");
}
signal(SIGIO, button_signal); //注册一个信号, 启动信号驱动机制
fcntl(fd, F_SETOWN, getpid()); //将本应用程序的进程号告诉给内核,最终使得驱动程序可以成功发送信号给应用程序
oflags = fcntl(fd, F_GETFL); //取得当前的状态
fcntl(fd, F_SETFL, oflags|FASYNC); //改变fasync标记, 最终会调用到驱动的fasync->fasync_helper
while(1)
{
sleep(1000);
}
return 0;
}
编译生成button_drv.ko和button_app文件,运行./button_app /dev/button_dev
Linux 驱动——Button驱动5(atomic)原子量的更多相关文章
- Linux 驱动——Button驱动7(Timer)消抖
button_drv.c驱动文件: #include <linux/module.h>#include <linux/kernel.h>#include <linux/f ...
- Linux 驱动——Button驱动6(mutex、NBLOCK、O_NONBLOCK)互斥信号量、阻塞、非阻塞
button_drv.c驱动文件: #include <linux/module.h>#include <linux/kernel.h>#include <linux/f ...
- Linux 驱动——Button驱动4(fasync)异步通知
button_drv.c驱动文件: #include <linux/module.h>#include <linux/kernel.h>#include <linux/f ...
- Linux 驱动——Button驱动3(poll机制)
button_drv.c驱动文件: #include <linux/module.h>#include <linux/kernel.h>#include <linux/f ...
- Linux 驱动——Button驱动2
button_drv.c驱动文件: #include <linux/module.h>#include <linux/kernel.h>#include <linux/f ...
- Linux 驱动——Button驱动1
button_drv.c驱动文件: #include <linux/module.h>#include <linux/kernel.h>#include <linux/i ...
- Linux GPIO键盘驱动开发记录_OMAPL138
Linux GPIO键盘驱动开发记录_OMAPL138 Linux基本配置完毕了,这几天开始着手Linux驱动的开发,从一个最简单的键盘驱动开始,逐步的了解开发驱动的过程有哪些.看了一下Linux3. ...
- linux块设备驱动之实例
1.注册:向内核注册个块设备驱动,其实就是用主设备号告诉内核这个代表块设备驱动 sbull_major = register_blkdev(sbull_major, "sbull&quo ...
- Linux 视频设备驱动V4L2最常用的控制命令
http://blog.csdn.net/shaolyh/article/details/6583226 Linux 视频设备驱动V4L2最常用的控制命令使用说明(1.02) 命令 功能 VIDIOC ...
随机推荐
- c++ 查缺补漏
c++句柄 win句柄保存对象的实时地址(对象消失,句柄消失).指针保存固定地址(对象消失,内存泄漏) 超简单句柄类 指针型句柄 管理图书类句柄 c++ 枚举 enum Suit { Diamonds ...
- 爬虫(二)Python网络爬虫相关基础概念、爬取get请求的页面数据
什么是爬虫 爬虫就是通过编写程序模拟浏览器上网,然后让其去互联网上抓取数据的过程. 哪些语言可以实现爬虫 1.php:可以实现爬虫.php被号称是全世界最优美的语言(当然是其自己号称的,就是王婆 ...
- Spring IOC、AOP、Transaction、MVC小结
1.IOC.AOP:把对象交给Spring进行管理,通过面向切面编程来实现一些“模板式”的操作,使得程序员解放出来,可以更多的关注业务实现. - ...
- QVector常见使用方法
仅在此简单介绍QVector的一些常见函数,有兴趣的可以查下QT,在QT中介绍的很详细 构造函数,QVector的构造函数很多样化,常见的有 QVector() 无参的构造函数 QVector(int ...
- iOS 底层解析weak的实现原理(包含weak对象的初始化,引用,释放的分析)
原文 很少有人知道weak表其实是一个hash(哈希)表,Key是所指对象的地址,Value是weak指针的地址数组.更多人的人只是知道weak是弱引用,所引用对象的计数器不会加一,并在引用对象被释放 ...
- EAP-MD5计算方法
一.说明 领导要求确认设备进行802.1X认证时,是否直接将用户名密码明文传给交换机.配好端口镜像.搭好Radius环境后进行了抓包分析. 二.计算 2.1 802.1X认证过程 完整流程如下: 客户 ...
- !/usr/bin/env python和!/usr/bin/python的区别
脚本语言第一行 作用:文件中代码用指定可执行程序运行 #!/usr/bin/Python 执行脚本时,调用/usr/bin下python解释器 #!/usr/bin/env python 在环境设 ...
- 简单的新手加法运算(基于Struts2)
软件151 王帅 在搭好框架的前提下,首先编写action.java文件: import com.opensymphony.xwork2.ActionSupport; public class Us ...
- HIbernate常见异常(转载)
SSH阶段常见的异常系列之一hibernate(15条) 异常一 异常一 异常描述: Sax解析异常:cvc-复杂的类型,发现了以元素maping开头的无效内容,应该是以 ‘{“http://www. ...
- 用docker搭建python项目运行环境
Docker Hub镜像加速器 安装docker: curl -sSL http://acs-public-mirror.oss-cn-hangzhou.aliyuncs.com/docker-eng ...