Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 68466   Accepted: 31752
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0 题目链接: http://poj.org/problem?id=3264 题目大意: 给定一个区间N,并初始化该区间,Q次询问区间内的最大值减最小值。 题目分析: 这是一道基础入门级的线段树题目。线段树是二分的思想。开结构体存储节点的左、右区间和最大、最小值。根节点的左区间是1,右区间是N。 父节点分成左孩子和右孩子,即左孩子的区间为父节点的左区间到父节点的中值((l+r)/2),右孩子的区间为父节点的中值加一((l+r)/2+1)到父节点的右区间。 AC代码如下:
#include<stdio.h>
#include<algorithm>
using namespace std;
const int MAX=1E6+; struct s{
int left,right;
int maxx,minn;
}tree[MAX<<]; void btree(int k,int l,int r) //建树
{
tree[k].left=l; //节点左右区间更新
tree[k].right=r;
if(l==r) //叶子
{
scanf("%d",&tree[k].minn);
tree[k].maxx=tree[k].minn;
return ;
}
int mid=(l+r)/;
btree(k<<,l,mid); //左孩子
btree(k<<|,mid+,r); //右孩子
tree[k].maxx=max(tree[k<<].maxx,tree[k<<|].maxx); //更新节点最大值
tree[k].minn=min(tree[k<<].minn,tree[k<<|].minn); //更新节点最小值
} int ma,mi;
void query(int k,int l,int r) //询问
{
if(tree[k].left>=l&&tree[k].right<=r)
{
ma=max(tree[k].maxx,ma);
mi=min(tree[k].minn,mi);
return ;
}
int mid=(tree[k].left+tree[k].right)/;
if(mid>=r) //节点中值大于询问区间右边 询问左孩子
{
query(k<<,l,r);
}
else if(mid<l) //节点中值小于询问左边 询问右孩子
{
query(k<<|,l,r);
}
else //左、右都需要询问
{
query(k<<,l,r);
query(k<<|,l,r);
}
return ;
} int main()
{
int n,q;
scanf("%d%d",&n,&q);
btree(,,n);
for(int i=;i<=q;i++)
{
ma=-;mi=0x3f3f3f3f;
int a,b;
scanf("%d%d",&a,&b);
query(,a,b);
printf("%d\n",ma-mi);
}
return ;
}
												

POJ - 3264——Balanced Lineup(入门线段树)的更多相关文章

  1. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

  2. poj 3264:Balanced Lineup(线段树,经典题)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 32820   Accepted: 15447 ...

  3. poj 3264 Balanced Lineup (线段树)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 42489   Accepted: 20000 ...

  4. POJ 3264 Balanced Lineup 【线段树/区间最值差】

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 62103 Accepted: 29005 Cas ...

  5. POJ 3264 Balanced Lineup 【线段树】

    <题目链接> 题目大意: 求给定区间内最大值与最小值之差. 解题分析: 线段树水题,每个节点维护两个值,分别代表该区间的最大和最小值即可. #include <cstdio> ...

  6. POJ 3264 Balanced Lineup【线段树】

    题意:给出n个数,a1,a2,a3,---,an,再给出q次询问区间al到ar之间的最大值和最小值的差 学习线段树的第一道题目 学习的这一篇 http://www.cnblogs.com/kuangb ...

  7. POJ - 3264 Balanced Lineup(线段树或RMQ)

    题意:求区间最大值-最小值. 分析: 1.线段树 #include<cstdio> #include<cstring> #include<cstdlib> #inc ...

  8. POJ 3264 Balanced Lineup (线段树查找最大最小值)

    http://poj.org/problem?id=3264 题意:给你一个长度为n的序列a[N] (1 ≤ N ≤ 50000),询问Q(1 ≤ Q ≤ 200000) 次,每次输出[L, R]区间 ...

  9. 暑期训练狂刷系列——poj 3264 Balanced Lineup(线段树)

    题目连接: http://poj.org/problem?id=3264 题目大意: 有n个数从1开始编号,问在指定区间内,最大数与最小数的差值是多少? 解题思路: 在节点中存储max,min,然后查 ...

  10. poj 3246 Balanced Lineup(线段树)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 38942   Accepted: 18247 ...

随机推荐

  1. Leaflet获取可视范围内4个顶点

    //地图级别改变时发生 map.on("zoomend", function (e) { var zoom_val = e.target.getZoom(); map_drag() ...

  2. HackerRank-Python攻城歷程-1.Tuples

    Solution: if __name__ == '__main__': n = int(input()) integer_list = map(int, input().split()) t=tup ...

  3. mybatis逆向工程失败

    [ERROR] Failed to execute goal org.mybatis.generator:mybatis-generator-maven-plugin:1.3.6:generate ( ...

  4. Windows 下Jenkins进程误删,如何重启

    手残误删了Jenkins运行的java进程,结果.... 用管理员身份启动cmd 然后进入jenkins目录.运行 net start jenkins 否则会报系统错误5 延伸: net stop j ...

  5. SQL Server 第四章 存储过程(Procedure),触发器(Trigger),数据完整性(Data Integrity)

    use electric go --变量 --局部变量的声明格式 --declare @局部变量名 数据类型 --局部变量赋值 declare @littlepage int )) ) select ...

  6. python ssh登录linux 上传和下载文件

    #!usr/bin/python# coding: utf-8 import paramikoimport jsonremotedir='/tmp/log'remotefile = 'bst_mana ...

  7. Lab 11-2

    Analyze the malware found in Lab11-02.dll. Assume that a suspicious file named Lab11-02.ini was also ...

  8. cron定时任务

    1.确认系统安装了cron rpm -aq | grep crontabs 2.认识cron时间格式 3.生成定时任务 crontab -e #进入任务命令编辑模式 30 7,12,20 * * * ...

  9. Write Sling Servlet using a resource type and selector

    @SlingServlet( resourceTypes = "geometrixx/components/homepage", selectors = "data&qu ...

  10. linux基础命令touch

    touch /home/ceshi    创建文件命令 touch    /home/ceshi1 ceshi2    同时创建两个文件. cat   显示文件内容(短的文件) -n  带行号 tac ...