Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equations. J. Math. Fluid Mech. 12 (2010), no. 2, 171--180] 中, 作者证明了如果
$$u\times\f{\om}{|\om|}\in L^p(0,T;L^q(\bbR^3)),\quad\f{2}{p}+\f{3}{q}=1,\quad 3<q\leq\infty,$$
或
$$\om\times\f{u}{|u|}\in L^p(0,T;L^q(\bbR^3)),\quad\f{2}{p}+\f{3}{q}=2,\quad \f{3}{2}<q\leq\infty,$$
则解光滑.
Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$的更多相关文章
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...
- Cross Product
Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...
- Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...
- 向量 dot cross product 点积叉积 几何意义
向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...
随机推荐
- Vue 自定义一个插件的用法、小案例及在项目中的应用
1.开发插件 install有两个参数,第一个是Vue构造器,第二个参数是一个可选的选项对象 MyPlugin.install = function (Vue, options) { // 1 ...
- (五)Cluster Health
Let’s start with a basic health check, which we can use to see how our cluster is doing. We’ll be us ...
- Linux内存管理 (20)最新更新和展望
专题:Linux内存管理专题 关键词:OOM.swap.HMM.LRU. 本系列没有提到的内容由THP(Transparent Huge Page).memory cgroup.slub.CMA.zr ...
- vue style标签中使用less
只需要下载相应的包即可:(前提是使用vue-cli搭建的项目) 1.安装less依赖,npm install less less-loader --save 2.即可在相应的vue文件中使用less操 ...
- python之yagmail模块--小白博客
yagmail 实现发邮件 yagmail 可以简单的来实现自动发邮件功能. 安装 pip install yagmail 简单例子 import yagmail #链接邮箱服务器 yag = yag ...
- C语言 课堂随记
1.codeblocks中的pow函数会有误差. 自定义pow函数: int pow(int x,int y) { ; ; i<=y; i++) t=t*x; return t; } 2.C库函 ...
- libavcodev may be vulnerable or is not supported, and should be updated for play video
media.libavcodec.allow-obsolete
- Euler Circuit UVA - 10735(混合图输出路径)
就是求混合图是否存在欧拉回路 如果存在则输出一组路径 (我就说嘛 咱的代码怎么可能错.....最后的输出格式竟然w了一天 我都没发现) 解析: 对于无向边定向建边放到网络流图中add(u, v, 1) ...
- Flask websocket
websocket 概念 是一套协议,协议规定了: - 连接时需要握手 - 发送数据进行加密 - 连接之后不断开 意义 实现长轮询等操作 框架支持 - flask,gevent-websocket - ...
- license.json
{"license":{"uid":"5359f3d1-8c8c-462b-a17b-b7eb0c3ddb8f","type&qu ...