PCL几种采样方法
(1)下采样 Downsampling
一般下采样是通过构造一个三维体素栅格,然后在每个体素内用体素内的所有点的重心近似显示体素中的其他点,这样体素内所有点就用一个重心点来表示,进行下采样的来达到滤波的效果,这样就大大的减少了数据量,特别是在配准,曲面重建等工作之前作为预处理,可以很好的提高程序的运行速度,
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h> int
main(int argc, char** argv)
{
// 创建点云对象
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new pcl::PointCloud<pcl::PointXYZ>); // 读取PCD文件
if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[], *cloud) != )
{
return -;
} // 创建滤波对象
pcl::VoxelGrid<pcl::PointXYZ> filter;
filter.setInputCloud(cloud);
// 设置体素栅格的大小为 1x1x1cm
filter.setLeafSize(0.01f, 0.01f, 0.01f);
filter.filter(*filteredCloud);
}
实验结果(略)
(2)
均匀采样:这个类基本上是相同的,但它输出的点云索引是选择的关键点在计算描述子的常见方式。
#include <pcl/io/pcd_io.h>
#include <pcl/keypoints/uniform_sampling.h> int
main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new pcl::PointCloud<pcl::PointXYZ>);
if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[], *cloud) != )
{
return -;
}
// Uniform sampling object.
pcl::UniformSampling<pcl::PointXYZ> filter;
filter.setInputCloud(cloud);
filter.setRadiusSearch(0.01f);
// We need an additional object to store the indices of surviving points.
pcl::PointCloud<int> keypointIndices; filter.compute(keypointIndices);
pcl::copyPointCloud(*cloud, keypointIndices.points, *filteredCloud);
}
(3)增采样 :增采样是一种表面重建方法,当你有比你想象的要少的点云数据时,增采样可以帮你恢复原有的表面(S),通过内插你目前拥有的点云数据,这是一个复杂的猜想假设的过程。所以构建的结果不会百分之一百准确,但有时它是一种可选择的方案。所以,在你的点云云进行下采样时,一定要保存一份原始数据!
#include <pcl/io/pcd_io.h>
#include <pcl/surface/mls.h> int main(int argc,char** argv)
{
// 新建点云存储对象
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new pcl::PointCloud<pcl::PointXYZ>); // 读取文件
if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[], *cloud) != )
{
return -;
}
// 滤波对象
pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ> filter;
filter.setInputCloud(cloud);
//建立搜索对象
pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree;
filter.setSearchMethod(kdtree);
//设置搜索邻域的半径为3cm
filter.setSearchRadius(0.03);
// Upsampling 采样的方法有 DISTINCT_CLOUD, RANDOM_UNIFORM_DENSITY
filter.setUpsamplingMethod(pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ>::SAMPLE_LOCAL_PLANE);
// 采样的半径是
filter.setUpsamplingRadius(0.03);
// 采样步数的大小
filter.setUpsamplingStepSize(0.02); filter.process(*filteredCloud);
}
实验的结果
原始图像可视化:

(4)表面重建
深度传感器的测量是不准确的,和由此产生的点云也是存在的测量误差,比如离群点,孔等表面,可以用一个算法重建表面,遍历所有的点云和插值数据,试图重建原来的表面。比如增采样,PCL使用MLS算法和类。执行这一步是很重要的,因为由此产生的点云的法线将更准确。
#include <pcl/io/pcd_io.h>
#include <pcl/surface/mls.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/visualization/cloud_viewer.h>
#include <boost/thread/thread.hpp>
int
main(int argc, char** argv)
{ pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointNormal>::Ptr smoothedCloud(new pcl::PointCloud<pcl::PointNormal>); if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[], *cloud) != )
{
return -;
} // Smoothing object (we choose what point types we want as input and output).
pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> filter;
filter.setInputCloud(cloud);
// Use all neighbors in a radius of 3cm.
filter.setSearchRadius(0.03);
// If true, the surface and normal are approximated using a polynomial estimation
// (if false, only a tangent one).
filter.setPolynomialFit(true);
// We can tell the algorithm to also compute smoothed normals (optional).
filter.setComputeNormals(true);
// kd-tree object for performing searches.
pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree;
filter.setSearchMethod(kdtree); filter.process(*smoothedCloud); boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("smooth"));
viewer->addPointCloud<pcl::PointNormal>(smoothedCloud,"smoothed"); while(!viewer->wasStopped())
{
viewer->spinOnce();
boost::this_thread::sleep(boost::posix_time::microseconds());
}
}
运行即可查看结果

原始图像(加了颜色)

增采样平滑后(没有颜色信息)
微信公众号号可扫描二维码一起共同学习交流

PCL几种采样方法的更多相关文章
- MLE、MAP、贝叶斯三种估计框架
三个不同的估计框架. MLE最大似然估计:根据训练数据,选取最优模型,预测.观测值D,training data:先验为P(θ). MAP最大后验估计:后验概率. Bayesian贝叶斯估计:综合模型 ...
- 蒙特卡洛马尔科夫链(MCMC)
蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报 分类: 数据挖掘与机器学习(41) 版权声明: ...
- BRIEF 特征描述子
Binary Robust Independent Elementary Features www.cnblogs.com/ronny 1. BRIEF的基本原理 我们已经知道SIFT特征采用了128 ...
- hadoop 数据采样
http://www.cnblogs.com/xuxm2007/archive/2012/03/04/2379143.html 原文地址如上: 关于Hadoop中的采样器 .为什么要使用采样器 在这个 ...
- Hadoop的partitioner、全排序
按数值排序 示例:按气温字段对天气数据集排序问题:不能将气温视为Text对象并以字典顺序排序正统做法:用顺序文件存储数据,其IntWritable键代表气温,其Text值就是数据行常用简单做法:首先, ...
- Mapreduce-Partition分析
Partition所处的位置 Partition位置 Partition主要作用就是将map的结果发送到相应的reduce.这就对partition有两个要求: 1)均衡负载,尽量的将工作均匀的分配给 ...
- Hadoop 的 TotalOrderPartitioner
Partition所处的位置 Partition位置 Partition主要作用就是将map的结果发送到相应的reduce.这就对partition有两个要求: 1)均衡负载,尽量的将工作均匀的分配给 ...
- 第十六节、特征描述符BRIEF(附源码)
我们已经知道SIFT算法采用128维的特征描述子,由于描述子用的是浮点数,所以它将会占用512字节的空间.类似的SUFR算法,一般采用64维的描述子,它将占用256字节的空间.如果一幅图像中有1000 ...
- AD7729_双通道Sigma-Delta ADC
sigma-delta adc的原理,就是通过一种结构把量化噪声调制到频谱的高端,也即对量化噪声而言,sdm是一个高通滤波器,而对基带信号则等价为一个全通滤波器,这样等价的基带信号的量化噪声就很小了, ...
随机推荐
- 如何在Visual Studio VS中定义多项目模板
https://msdn.microsoft.com/en-us/library/ms185308.aspx Multi-project templates act as containers for ...
- 腾讯企业邮箱SMTP-邮件发送失败异常:“ SMTPSendFailedException:501 ϵͳÒÑÇ¿ÖÆ¿ªÆôÕʺÅÉý¼¶ÉèÖã¬ÇëµÇ¼e
这里我们在报警发送邮件用的是腾讯的企业邮箱,突然这两天没有报警邮件,很是奇怪 发送邮件报错 SMTP-邮件发送失败异常:“ SMTPSendFailedException:501 ϵͳÒÑÇ¿ÖÆ ...
- Java:集合,Arrays工具类用法
1. 描述 Arrays工具类提供了针对数组(Array)的一些操作,比如排序.搜索.将数组(Array)转换列表(List)等等,都为静态(static)方法: binarySearch - 使用二 ...
- [CTCI] 最长合成字符串
最长合成字符串 题目描述 有一组单词,请编写一个程序,在数组中找出由数组中字符串组成的最长的串A,即A是由其它单词组成的(可重复)最长的单词. 给定一个string数组str,同时给定数组的大小n.请 ...
- RecyclerView中实现headerView,footerView功能
之前用com.bartoszlipinski.recyclerviewheader.RecyclerViewHeader 不过局限性有点大. (com.bartoszlipinski.recycler ...
- asp.net core中使用log4net
和之前的ASP.NET MVC中的使用LOG4NET的方法有些不同,这里先记录一下,使用步骤如下 : 1. 建立 ASP.NET CORE项目中,NUGET中搜索log4net后下载安装 2. 根目录 ...
- 行为类模式(五):中介者(Mediator)
定义 定义一个中介对象来封装系列对象之间的交互.中介者使各个对象不需要显示地相互引用,从而使其耦合性松散,而且可以独立地改变他们之间的交互. 试想一下,如果多个类之间相互都有引用,那么当其中一个类修改 ...
- Eclipse 配置Maven以及修改默认Repository
今天将Eclipse关于Maven的配置总结一下,方便以后配置. 一.配置Maven环境 1.下载apache-maven文件,选择自己需要的版本,地址:http://mirrors.cnnic.cn ...
- Mysql 管理和备份
mysqladmin用于管理MySQL服务器的客户端,mysqladmin执行管理操作的客户程序,可以用它来创建或删除数据库,重载授权表,将表刷新到硬盘上,以及重新打开日志文件,检索版本.进程,以及服 ...
- C++操作符的优先级 及其记忆方法
优先级 操作符 描述 例子 结合性 1 ()[]->.::++-- 调节优先级的括号操作符数组下标访问操作符通过指向对象的指针访问成员的操作符通过对象本身访问成员的操作符作用域操作符后置自增操作 ...