hadoop Mahout中相似度计算方法介绍(转)
来自:http://blog.csdn.net/samxx8/article/details/7691868
| 相似距离(距离越小值越大) | 优点 | 缺点 | 取值范围 |
|
PearsonCorrelation
类似于计算两个矩阵的协方差
|
不受用户评分偏高
或者偏低习惯影响的影响
|
1. 如果两个item相似个数小于2时
无法计算相似距离.
[可以使用item相似个数门限来解决.]
没有考虑两个用户之间的交集大小[使用weight参数来解决]
2. 无法计算两个完全相同的items
|
[-1, 1] |
|
EuclideanDistanceSimilarity
计算欧氏距离, 使用1/(1+d)
|
使用与评分大小较
重要的场合
|
如果评分不重要则需要归一化,
计算量大
同时每次有数据更新时麻烦
|
[-1, 1] |
|
CosineMeasureSimilarity
计算角度
|
与PearsonCorrelation一致 | [-1, 1] | |
|
SpearmanCorrelationSimilarity
使用ranking来取代评分的
PearsonCorrelation
|
完全依赖评分和完全放弃评分之间的平衡 |
计算rank消耗时间过大
不利于数据更新
|
[-1, 1] |
|
CacheUserSimilarity
保存了一些tag, reference
|
缓存经常查询的user-similarity | 额外的内存开销 | |
|
TanimotoCoefficientSimilarity
统计两个向量的交集占并集的比例
同时并集个数越多, 越相近.
|
适合只有相关性
而没有评分的情况
|
没有考虑评分,信息丢失了 | [-1,1] |
|
LogLikeLihoodSimilarity
是TanimoteCoefficientSimilarity
的一种基于概率论改进
|
计算两者重合的偶然性
考虑了两个item相邻的独特性
|
计算复杂 | [-1,1] |
在现实中广泛使用的推荐系统一般都是基于协同过滤算法的,这类算法通常都需要计算用户与用户或者项目与项目之间的相似度,对于数据量以及数据类型不 同的数据源,需要不同的相似度计算方法来提高推荐性能,在mahout提供了大量用于计算相似度的组件,这些组件分别实现了不同的相似度计算方法。下图用 于实现相似度计算的组件之间的关系:

图1、项目相似度计算组件

图2、用户相似度计算组件
下面就几个重点相似度计算方法做介绍:
皮尔森相关度
类名:PearsonCorrelationSimilarity
原理:用来反映两个变量线性相关程度的统计量
范围:[-1,1],绝对值越大,说明相关性越强,负相关对于推荐的意义小。
说明:1、 不考虑重叠的数量;2、 如果只有一项重叠,无法计算相似性(计算过程被除数有n-1);3、 如果重叠的值都相等,也无法计算相似性(标准差为0,做除数)。
该相似度并不是最好的选择,也不是最坏的选择,只是因为其容易理解,在早期研究中经常被提起。使用Pearson线性相关系数必须假设数据是成对地从正态 分布中取得的,并且数据至少在逻辑范畴内必须是等间距的数据。Mahout中,为皮尔森相关计算提供了一个扩展,通过增加一个枚举类型 (Weighting)的参数来使得重叠数也成为计算相似度的影响因子。
欧式距离相似度
类名:EuclideanDistanceSimilarity
原理:利用欧式距离d定义的相似度s,s=1 / (1+d)。
范围:[0,1],值越大,说明d越小,也就是距离越近,则相似度越大。
说明:同皮尔森相似度一样,该相似度也没有考虑重叠数对结果的影响,同样地,Mahout通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。
余弦相似度
类名:PearsonCorrelationSimilarity和UncenteredCosineSimilarity
原理:多维空间两点与所设定的点形成夹角的余弦值。
范围:[-1,1],值越大,说明夹角越大,两点相距就越远,相似度就越小。
说明:在数学表达中,如果对两个项的属性进行了数据中心化,计算出来的余弦相似度和皮尔森相似度是一样的,在 mahout中,实现了数据中心化的过程,所以皮尔森相似度值也是数据中心化后的余弦相似度。另外在新版本中,Mahout提供了 UncenteredCosineSimilarity类作为计算非中心化数据的余弦相似度。
Spearman秩相关系数
类名:SpearmanCorrelationSimilarity
原理:Spearman秩相关系数通常被认为是排列后的变量之间的Pearson线性相关系数。
范围:{-1.0,1.0},当一致时为1.0,不一致时为-1.0。
说明:计算非常慢,有大量排序。针对推荐系统中的数据集来讲,用Spearman秩相关系数作为相似度量是不合适的。
曼哈顿距离
类名:CityBlockSimilarity
原理:曼哈顿距离的实现,同欧式距离相似,都是用于多维数据空间距离的测度
范围:[0,1],同欧式距离一致,值越小,说明距离值越大,相似度越大。
说明:比欧式距离计算量少,性能相对高。
Tanimoto系数
类名:TanimotoCoefficientSimilarity
原理:又名广义Jaccard系数,是对Jaccard系数的扩展,等式为
范围:[0,1],完全重叠时为1,无重叠项时为0,越接近1说明越相似。
说明:处理无打分的偏好数据。
对数似然相似度
类名:LogLikelihoodSimilarity
原理:重叠的个数,不重叠的个数,都没有的个数
范围:具体可去百度文库中查找论文《Accurate Methods for the Statistics of Surprise and Coincidence》
说明:处理无打分的偏好数据,比Tanimoto系数的计算方法更为智能。
hadoop Mahout中相似度计算方法介绍(转)的更多相关文章
- Mahout实战---编写自己的相似度计算方法
Mahout本身提供了很多的相似度计算方法,如PCC,COS等.但是当需要验证自己想出来的相似度计算公式是否是好的,这时候需要自己实现相似度类.研究了Mahout-core-0.9.jar的源码后,自 ...
- (转)mahout中k-means例子的运行
首先简单说明下,mahout下处理的文件必须是SequenceFile格式的,所以需要把txtfile转换成sequenceFile.SequenceFile是hadoop中的一个类,允 ...
- mahout in Action2.2-聚类介绍-K-means聚类算法
聚类介绍 本章包含 1 实战操作了解聚类 2.了解相似性概念 3 使用mahout执行一个简单的聚类实例 4.用于聚类的各种不同的距离測算方法 作为人类,我们倾向于与志同道合的人合作-"鸟的 ...
- mahout中KMeans算法
本博文主要内容有 1.kmeans算法简介 2.kmeans执行过程 3.关于查看mahout中聚类结果的一些注意事项 4.kmeans算法图解 5.mahout的kmeans算法实现 ...
- 从零自学Hadoop(12):Hadoop命令中
阅读目录 序 HDFS Commands User Commands Administration Commands Debug Commands 引用 系列索引 本文版权归mephisto和博客园共 ...
- mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...
- Hadoop基础-MapReduce的常用文件格式介绍
Hadoop基础-MapReduce的常用文件格式介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MR文件格式-SequenceFile 1>.生成SequenceF ...
- Java基础-JAVA中常见的数据结构介绍
Java基础-JAVA中常见的数据结构介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是数据结构 答:数据结构是指数据存储的组织方式.大致上分为线性表.栈(Stack) ...
- ArcGIS Engine中的重点类库介绍
转自原文ArcGIS Engine中的重点类库介绍 System类库 System类库是ArcGIS体系结构中最底层的类库.System类库包含给构成ArcGIS的其他类库提供服务的组件.System ...
随机推荐
- Convolutional Neural Networks at Constrained Time Cost(精读)
一.文献名字和作者 Convolutional Neural Networks at Constrained Time Cost,CVPR 2015 二.阅读时间 2015年6月30 ...
- java List转换为字符串并加入分隔符的一些方法总结
方法一: public String listToString(List list, char separator) { StringBuilder sb = new StringBuilder(); ...
- Java 8新的时间日期库的20个使用示例
原文链接 作者:Javin Paul 译者:之诸暇 除了lambda表达式,stream以及几个小的改进之外,Java 8还引入了一套全新的时间日期API,在本篇教程中我们将通过几个简单的任务示例来学 ...
- Java_并发线程_Semaphore、CountDownLatch、CyclicBarrier、Exchanger
1.Semaphore 信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施, 它负责协调各个线程, 以保证它们可以正确.合理的使用公共资源. Semaphore当前在多线程 ...
- 部署包含水晶报表Crystal Reports 的VS.NET2005应用程序[原创]
要部署包含水晶报表Crystal Reports 的应用程序,您需要在生成解决方案之前创建一个安装项目,并且向应用程序中添加必要的合并模块. 1.打开 VS.NET2005 编程IDE. 2.在解决方 ...
- composer - No business network has been specified for this connection 解决方案
I have installed hyperledger composer locally. But on localhost it gives error : Error : Error tryin ...
- fabric 清理环境 运行SDK
清理环境: rm -rf /tmp/* rm -rf ~/.hfc-key-store/ 启动网络: docker ps -a create channel: join channel: 清理npm ...
- protobuf示例
Google protobuf 是一个高性能的序列化结构化数据存储格式的接口描述语言,具有多语言支持,协议数据小,方便传输,高性能等特点.通过将结构化数据序列化(串行化)成二进制数组,并将二进制数组反 ...
- Inferred type 'S' for type parameter 'S' is not within its bound; should extend
在使用springboot 方法报错: Inferred type 'S' for type parameter 'S' is not within its bound; should extends ...
- 【没有注意过的细节】用scanf读一个unsigned char? %hhu 的用法
头段时间我的代码,有一个 unsigned char,我需要从sscanf 中读取字符串为这个值.但是一般char 是用%c的,我是要值得. 所以我使用了%d %u来读,结果报警告: unsigned ...