John

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2034    Accepted Submission(s): 1096

Problem Description
Little John is playing very funny game with his younger brother. There is one big box filled with M&Ms of different colors. At first John has to eat several M&Ms of the same color. Then his opponent has to make a turn. And so on. Please note that each player has to eat at least one M&M during his turn. If John (or his brother) will eat the last M&M from the box he will be considered as a looser and he will have to buy a new candy box.

Both of players are using optimal game strategy. John starts first always. You will be given information about M&Ms and your task is to determine a winner of such a beautiful game.

 
Input
The first line of input will contain a single integer T – the number of test cases. Next T pairs of lines will describe tests in a following format. The first line of each test will contain an integer N – the amount of different M&M colors in a box. Next line will contain N integers Ai, separated by spaces – amount of M&Ms of i-th color.

Constraints:
1 <= T <= 474,
1 <= N <= 47,
1 <= Ai <= 4747

 
Output
Output T lines each of them containing information about game winner. Print “John” if John will win the game or “Brother” in other case.

 
Sample Input
2
3
3 5 1
1
1
 
Sample Output
John
Brother
 
Source
 
Recommend
lcy
 

尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是
(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情
形。

计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(^)表示这种运算。这种运算和一般加法不同的一点是1^1=0。先看(1,2,3)的按位模2加的结
果:

1 =二进制01
2 =二进制10
3 =二进制11 (^)
———————
0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。任何奇异局势(a,b,c)都有 a ^ b ^ c =0。如果我们面对的是一个非奇异局势(a,b,c),

要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为  a ^ b,即可,因为有如下的运算结果:  a ^ b ^( a ^ b)=(a ^ a) ^ ( b ^ b ) = 0 ^ 0 = 0。

要将c 变为a ^ b,只要从 c中减去 c -(a ^ b)即可。

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int main(){ //freopen("input.txt","r",stdin); int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
int ans=,flag=,x;
for(int i=;i<n;i++){
scanf("%d",&x);
ans^=x;
if(x>) //当所有数据都为1时的特判
flag=;
}
if(flag){
if(ans==)
puts("Brother");
else
puts("John");
}else{
if(n&)
puts("Brother");
else
puts("John");
}
}
return ;
}

HDU 1907 John (Nim博弈)的更多相关文章

  1. HDU 1907 John nim博弈变形

    John Problem Description   Little John is playing very funny game with his younger brother. There is ...

  2. HDU 1907 John(博弈)

    题目 参考了博客:http://blog.csdn.net/akof1314/article/details/4447709 //0 1 -2 //1 1 -1 //0 2 -1 //1 2 -1 / ...

  3. hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)

    Problem Description Little John is playing very funny game with his younger brother. There is one bi ...

  4. hdu 1907 John (anti—Nim)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)http://acm.h ...

  5. POJ 3480 &amp; HDU 1907 John(尼姆博弈变形)

    题目链接: PKU:http://poj.org/problem? id=3480 HDU:http://acm.hdu.edu.cn/showproblem.php? pid=1907 Descri ...

  6. HDU - 1907 John 反Nimm博弈

    思路: 注意与Nimm博弈的区别,谁拿完谁输! 先手必胜的条件: 1.  每一个小游戏都只剩一个石子了,且SG = 0. 2. 至少有一堆石子数大于1,且SG不等于0 证明:1. 你和对手都只有一种选 ...

  7. HDU 1907 John(取火柴博弈2)

    传送门 #include<iostream> #include<cstdio> #include<cstring> using namespace std; int ...

  8. hdu 1907 John(anti nim)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  9. hdu 1907 John (尼姆博弈)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

随机推荐

  1. TF-IDF及其算法

    TF-IDF及其算法 概念 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术.TF-IDF是一种统计方法,用 ...

  2. capwap学习笔记——初识capwap(三)

    2.5.6 CAPWAP状态机详解 2.5.6.1 Start to Idle 这个状态变迁发生在设备初始化完成. ¢  WTP: 开启CAPWAP状态机.     ¢  AC:  开启CAPWAP状 ...

  3. ASP入门(十二)-Application对象

    在一起协同工作以完成某项任务的一组ASP文件称为一个应用程序.Application 对象用于把这些文件捆绑在一起. Application 对象用于在整个应用程序生存期间保存信息. Applicat ...

  4. iOS 动画效果。简单的提示消失

    UILabel * label1 = [[UILabel alloc]initWithFrame:CGRectMake(, , , )]; label1.text = @"qingjoin& ...

  5. asp.net 定时执行任务代码 定时采集数据

    using System; using System.Data; using System.Configuration; using System.Collections; using System. ...

  6. MVC 之 缓存机制(二)

    八.应用程序缓存 应用程序缓存提供了一种编程方式,可通过键/值对将任意数据存储在内存中. 使用应用程序缓存与使用应用程序状态类似. 但是,与应用程序状态不同的是,应用程序缓存中的数据是易失的, 即数据 ...

  7. JAVA GC优化入门

    为什么需要优化GC? JAVA的GC是面试必考的题目,可是在实际项目中什么时候使用GC哪?或者应该什么时候优化GC哪?有句名言:“GC优化永远是最后一项任务”. 在使用GC之前,应该考虑一下进行GC的 ...

  8. JAVA遍历HashMap和ArrayList

    List Map 基础信息 HashMap 最近写程序经常需要遍历集合,所以总结一下内容: 一.简单实现 Map map = new HashMap(); for(Object o : map.key ...

  9. MVC+WCF框架下广告位管理——文件上传

    广告位是站点中不可缺少的内容之中的一个.也是能直接给我们站点带来经济收益的内容之中的一个. 好的广告位不仅不会强宾压主,而会为我们的站点锦上添花.起到画龙点睛的作用.因此设计好广告位也是开发过程中一大 ...

  10. Webwork【04】Configuration 详解

    Webwork做为经典的Web MVC 框架,个人觉得源码中配置文件这部分代码的实现十分考究. 支持自定义自己的配置文件.自定义配置文件读取类.自定义国际化支持. 可以作为参考,单独引入到其他项目中, ...