最优化方法:共轭梯度法(Conjugate Gradient)
http://blog.csdn.net/pipisorry/article/details/39891197
共轭梯度法(Conjugate Gradient)
共轭梯度法(英语:Conjugate gradient method)。是求解数学特定线性方程组的数值解的方法。当中那些矩阵为对称和正定。共轭梯度法是一个迭代方法。它适用于稀疏矩阵线性方程组,由于这些系统对于像Cholesky分解这种直接方法太大了。这种方程组在数值求解偏微分方程时非经常见。
共轭梯度法也能够用于求解无约束的最优化问题。
在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组的迭代方法。
共轭梯度法能够从不同的角度推导而得,包含作为求解最优化问题的共轭方向法的特例,以及作为求解特征值问题的Arnoldi/Lanczos迭代的变种。
title=%E5%8F%8C%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95&action=edit&redlink=1" class="new" title="双共轭梯度法(页面不存在)">双共轭梯度法
基础
共轭向量
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="607" height="154" alt="" />
显然,共轭向量是线性无关向量.
初等变分原理
最速下降算法的有关性质
范数的‖・‖A的定义为‖x‖A=(Ax,x)。
上面定理表明,最速下降法从不论什么一向量x(0)出发,迭代产生的数列总是收敛到原方程Ax=b的解.而收敛速度的快慢则由A的特征值分布所决定.当A的最小特征值和最大特征值相差非常大时λ1<<λn,最速下降法收敛速度非常慢,非常少用于实际计算.
分析最速下降法收敛较慢的原因,能够发现,负梯度方向从局部来看是二次函数的最快下降方向,可是从总体来看,却并不是最好.对于对称正定矩阵A,共轭梯度法考虑选择关于A共轭的向量p1,p2,...取代最速(0)下降法中的负梯度方向,使迭代法对随意给定的初始点x具有有限步收敛性,即经有限步就能够(在理论上)得到问题的准确解.
共轭梯度算法
计算共轭梯度算法同一时候构造出关于A共轭的向量pi
求解Ax = b的算法。当中A是实对称正定矩阵。
- x0 := 0
- k := 0
- r0 := b-Ax
- repeat until rk is "sufficiently small":
- k := k + 1
- if k = 1
- p1 := r0
- else
- pk:=rk− 1+rk− 1⊤ rk− 1rk− 2⊤ rk− 2 pk− 1{\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}}
- end if
- α k:=rk− 1⊤ rk− 1pk⊤ Apk{\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}}
- xk := xk-1 + αk pk
- rk := rk-1 - αk A pk
- end repeat
- 结果为xk
- 或者
-
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
共轭梯度法评价
其长处是所需存储量小,具有步收敛性。稳定性高,并且不须要不论什么外来參数。
from:http://blog.csdn.net/pipisorry/article/details/39891197
ref: [wiki 共轭梯度法] [wiki 共轭梯度法的推导]
[数值分析 钟尔杰]
最优化方法:共轭梯度法(Conjugate Gradient)的更多相关文章
- 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)
数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the C ...
- 对Conjugate Gradient 优化的简单理解
对Conjugate Gradient 优化的简单理解) 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解) 数学优化方法在机器学习算法中至关重要,本篇博客 ...
- Numerical Testing Reportes of A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations
Numerical Testing Reportes of A New Conjugate Gradient Projection Method for Convex Constrained Nonl ...
- 共轭梯度法求解协同过滤中的 ALS
协同过滤是一类基于用户行为数据的推荐方法,主要是利用已有用户群体过去的行为或意见来预测当前用户的偏好,进而为其产生推荐.能用于协同过滤的算法很多,大致可分为:基于最近邻推荐和基于模型的推荐.其中基于最 ...
- L-BFGS
L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源.本文主要通过对于无约束最优化问题的一些常用算法总结,一 ...
- Math concepts / 数学概念
链接网址:Math concepts / 数学概念 – https://www.codelast.com/math-concepts-%e6%95%b0%e5%ad%a6%e6%a6%82%e5%bf ...
- 最优化算法:BFGS算法全称和L-BFGS算法全称
在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1.最速下降法(Gradient descent) 2.牛顿法(Newton method) 3. 共轭梯 ...
- [原创]最优化/Optimization文章合集
转载请注明出处:https://www.codelast.com/ 最优化(Optimization)是应用数学的一个分支,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最 ...
- [Math] 常见的几种最优化方法
我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素 ...
随机推荐
- Linux shell中一些参数与变量简介
linux中shell变量$#,$@,$0,$1,$2,$!,$$,$*,$-,$@......等很多个,很容易记错,这里再次整理一下,相关含义解释如下,并附上一个实践截图. 多看几次,多用几次,应该 ...
- Atlas:ERROR 1105 (HY000): #07000Proxy Warning - IP Forbidden
1:遇到一个奇怪的问题 Atlas的管理接口正常 添加一个client之后save config mysql -uroot -p -P1234 -h127.0.0.1 报错了:ERROR 1105 ( ...
- java 如何使用多线程调用类的静态方法?
1.情景展示 静态方法内部实现:将指定内容生成图片格式的二维码: 如何通过多线程实现? 2.分析 之所以采用多线程,是为了节省时间 3.解决方案 准备工作 logo文件 将生成的文件保存在F盘te ...
- SpringBoot配置RestTemplate的代理和超时时间
application.properties: #代理设置 proxy.enabled=false proxy.host=192.168.18.233 proxy.port=8888 #REST超时配 ...
- Ubuntu18.04使用adb和tcpdump对android设备进行网络调试
准备工作 1. Android设备需要root 2. 在 https://www.androidtcpdump.com/ 下载适用于Android的tcpdump可执行文件 3. 本地安装 andro ...
- 图标资源: http://www.easyicon.net/ 可以按关键词搜索
搜索图标
- ios中图片旋转
@interface ViewController () { UIImageView *_imageview; BOOL flag; } @end @implementation ViewContro ...
- java非web应用修改 properties/xml配置文件后,无需重启应用即可生效---自动加载
实现时主要使用Commons-Configuration.jar包,还需要commons-lang,disgestor,beanutils,collections等, package propFile ...
- iOS获取ipa素材、提取ipa资源图片文件
当我们看到一款优秀的App时,我们可能对它的一些素材比较感兴趣,或者我们也想仿写一款类似app,那么怎么能获取到它的素材资源文件呢? 下面我以ofo举例: 1.打开iTunes,搜索ofo关键字,选择 ...
- Netty-gRPC介绍和使用
转自:http://www.saily.top/2017/07/23/netty5/ gRPC Define your service using Protocol Buffers, a powerf ...