Exercise:PCA in 2D

习题的链接:Exercise:PCA in 2D

pca_2d.m

close all

%%================================================================
%% Step : Load data
% We have provided the code to load data from pcaData.txt into x.
% x is a * matrix, where the kth column x(:,k) corresponds to
% the kth data point.Here we provide the code to load natural image data into x.
% You do not need to change the code below. x = load('pcaData.txt','-ascii');
figure();
scatter(x(, :), x(, :));
title('Raw data'); %%================================================================
%% Step 1a: Implement PCA to obtain U
% Implement PCA to obtain the rotation matrix U, which is the eigenbasis
% sigma. % -------------------- YOUR CODE HERE --------------------
%u = zeros(size(x, )); %You need to compute this
sigma = (x*x') ./ size(x,2); %covariance matrix
[u,s,v] = svd(sigma); % --------------------------------------------------------
hold on
plot([ u(,)], [ u(,)]);
plot([ u(,)], [ u(,)]);
scatter(x(, :), x(, :));
hold off %%================================================================
%% Step 1b: Compute xRot, the projection on to the eigenbasis
% Now, compute xRot by projecting the data on to the basis defined
% by U. Visualize the points by performing a scatter plot. % -------------------- YOUR CODE HERE --------------------
%xRot = zeros(size(x)); % You need to compute this
xRot = u'*x; % -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure();
scatter(xRot(, :), xRot(, :));
title('xRot'); %%================================================================
%% Step : Reduce the number of dimensions from to .
% Compute xRot again (this time projecting to dimension).
% Then, compute xHat by projecting the xRot back onto the original axes
% to see the effect of dimension reduction % -------------------- YOUR CODE HERE --------------------
k = ; % Use k = and project the data onto the first eigenbasis
%xHat = zeros(size(x)); % You need to compute this
%Recovering an Approximation of the Data
xRot(k+:size(x,), :) = ;
xHat = u*xRot; % --------------------------------------------------------
figure();
scatter(xHat(, :), xHat(, :));
title('xHat'); %%================================================================
%% Step : PCA Whitening
% Complute xPCAWhite and plot the results. epsilon = 1e-;
% -------------------- YOUR CODE HERE --------------------
%xPCAWhite = zeros(size(x)); % You need to compute this
xPCAWhite = diag( ./ sqrt(diag(s)+epsilon)) * u' * x; % --------------------------------------------------------
figure();
scatter(xPCAWhite(, :), xPCAWhite(, :));
title('xPCAWhite'); %%================================================================
%% Step : ZCA Whitening
% Complute xZCAWhite and plot the results. % -------------------- YOUR CODE HERE --------------------
%xZCAWhite = zeros(size(x)); % You need to compute this
xZCAWhite = u * xPCAWhite; % --------------------------------------------------------
figure();
scatter(xZCAWhite(, :), xZCAWhite(, :));
title('xZCAWhite'); %% Congratulations! When you have reached this point, you are done!
% You can now move onto the next PCA exercise. :)

【DeepLearning】Exercise:PCA in 2D的更多相关文章

  1. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  2. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  3. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  4. 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders

    Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...

  5. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  6. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  7. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 【UFLDL】Exercise: Convolutional Neural Network

    这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...

随机推荐

  1. 1 R语言介绍

    注释:# 赋值:<- 查看.设定当前工作目录:getwd()  setwd()   wd:workspace directory[setwd("c:/myproject/project ...

  2. Spring(十八):Spring AOP(二):通知(前置、后置、返回、异常、环绕)

    AspectJ支持5种类型的通知注解: @Before:前置通知,在方法执行之前执行: @After:后置通知,在方法执行之后执行: @AfterRunning:返回通知,在方法返回结果之后执行(因此 ...

  3. CMenu and Dialog-based applications

    [问] Is it possible to put a menu in a dialog based application? How? [答] Yes, it is possible to add ...

  4. BitNami

    BitNami 提供wordpress.joomla.drupal.bbpress等开源程序的傻瓜式安装包下载,所有的安装包内置了服务器环境,就是说,不需要在本地 电脑上另外搭建服务器,就可以一次性傻 ...

  5. IO multiplexing 与 非阻塞网络编程

    使用I/O multipexing 的网络编程中,一般需要采用非阻塞网络编程的风格,防止服务端在处理高连接量大时候阻塞在某个文件描述符上面,比如某个socket 有大量的数据需要写,但是内核发送缓冲区 ...

  6. npm - 部分常用命令(笔记)

    <!-- npm部分简写: ci -> package-lock.json ls -> list pkg -> package i -> install -g -> ...

  7. 学习 Linux,302(混合环境): Samba 角色

    http://www.ibm.com/developerworks/cn/linux/l-lpic3-310-2/ 概述 在本文中,了解下列概念: Samba 安全模式 核心 Samba 守护程序的角 ...

  8. JAVA动态编译辅助类

    一.场景 平时我们学学用到在JVM运行时,动态编译.java的源代码情况,比如作为灵活的配置文件.这时候就要用到动态编译,参考下列. 二.类内容 1.引入依赖: <!-- https://mvn ...

  9. DOM笔记(十):JavaScript正則表達式

    一.RegExp ECMAScript通过RegExp类型类支持正則表達式,语法和Perl类似: var exp = /pattern/flags; patternb部分是不论什么简单的或复杂的正則表 ...

  10. MySql绿色版安装步骤和方法,以及配置文件修改,Mysql服务器启动

    MySql绿色版Windows安装步骤和方法,以及配置文件修改,Mysql服务器启动 支持“标准”Markdown / CommonMark和Github风格的语法,也可变身为代码编辑器: 支持实时预 ...